Publications by authors named "Debut Alexis"

Samarium-doped nanohydroxyapatite is a biomaterial with nerve regeneration activity and bioimaging. In this work, Sm/HAp; (Ca Sm (PO)(OH)) (0 ≤ ≤ 1) was synthesized using the hydrothermal method and thermally treated from 200 to 800 °C. The samples were characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and luminescence spectroscopy.

View Article and Find Full Text PDF

This work reports on the assessment of a non-hydrolytic electrochemical sensor for glucose sensing that is developed using functionalized carbon nanotubes (fCNTs)/Co(OH). The morphology of the nanocomposite was investigated by scanning electron microscopy, which revealed that the CNTs interacted with Co(OH). This content formed a nanocomposite that improved the electrochemical characterizations of the electrode, including the electrochemical active surface area and capacitance, thus improving sensitivity to glucose.

View Article and Find Full Text PDF

Anthocyanins, widely recognized for their antioxidant properties and potential health benefits, are highly susceptible to degradation due to environmental factors such as light, temperature, and pH leading to reduced bioavailability and efficacy. Microencapsulation, which involves entrapment in a matrix to enhance stability and bioavailability. This study aims to investigate the bioactive properties of microencapsulated anthocyanins derived from (Andean blueberry) and (Andean blackberry).

View Article and Find Full Text PDF

This study investigates the biological activities of microencapsulated anthocyanins extracted from two Andean ancestral edible plants, , and , with a focus on their potential applications in functional foods and therapeutics. The primary objective was to evaluate their antioxidant, antimicrobial, and cytotoxic properties alongside structural and functional analyses of the microencapsulation process. Anthocyanins were extracted and microencapsulated using maltodextrin as a carrier.

View Article and Find Full Text PDF

The increasing prevalence of multidrug-resistant (MDR) pathogens, persistent biofilms, oxidative stress, and cancerous cell proliferation poses significant challenges in healthcare and environmental settings, highlighting the urgent need for innovative and sustainable therapeutic solutions. The exploration of nanotechnology, particularly the use of green-synthesized nanoparticles, offers a promising avenue to address these complex biological challenges due to their multifunctional properties and biocompatibility. Utilizing a green synthesis approach, Mf-AgONPs were synthesized and characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy coupled with scanning electron microscopy (EDS-SEM), UV-Vis spectroscopy, and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Interferons (IFNs) are cytokines involved in the immune response with a synergistic regulatory effect on the immune response. They are therapeutics for various viral and proliferative conditions, with proven safety and efficacy. Their clinical application is challenging due to the molecules' size, degradation, and pharmacokinetics.

View Article and Find Full Text PDF

. is a native plant renowned for its medicinal properties in traditional healing in the Amazon Region. This plant is rich in polyphenols, flavonoids, anthocyanins, phenolic acids, tannins, ketones, triterpenes, as well as other bioactive compounds.

View Article and Find Full Text PDF

A zeolitic sample, named MT-ZLSH, was synthesized using mining tailings (MT) as the precursor material, resulting in a structure comprising: Linde type A (LTA) and sodalite-hydroxysodalite (ZLSH). This naming convention reflects the material's origin and its structural characteristics. The material was further modified by incorporating lithium, producing MT-ZLSH-Li.

View Article and Find Full Text PDF

Magnet-mediated gene therapy has gained considerable interest from researchers as a novel alternative for treating genetic disorders, particularly through the use of superparamagnetic iron oxide nanoparticles (NPs)-such as magnetite NPs (Fe3O4NPs)-as non-viral genetic vectors. Despite their commercial availability for specific genetic transfection, such as in microglia cell lines, many potential uses remain unexplored. Still, ethical concerns surrounding the use of human DNA often impede genetic research.

View Article and Find Full Text PDF
Article Synopsis
  • The research focused on creating a method to eliminate arsenic, a dangerous pollutant, from the Papallacta Lagoon in Ecuador, where arsenic levels reached between 18 to 652 μg/L.
  • Metallic nanoparticles such as MnO, FeO, and CuO were synthesized and tested for their effectiveness in removing arsenic, with FeO showing the highest removal rate of 87% at a concentration of 150 mg/L.
  • Various characterization techniques confirmed the properties of the nanoparticles, suggesting their potential application in water treatment facilities for the lagoon.
View Article and Find Full Text PDF

Semiconductor hollow spheres have garnered significant attention in recent years due to their unique structural properties and enhanced surface area, which are advantageous for various applications in catalysis, energy storage, and sensing. The present study explores the surfactant-assisted synthesis of bismuth ferrite (BiFeO) hollow spheres, emphasizing their enhanced visible-light photocatalytic activity. Utilizing a novel, facile, two-step evaporation-induced self-assembly (EISA) approach, monodisperse BiFeO hollow spheres were synthesized with a narrow particle size distribution.

View Article and Find Full Text PDF

Agro-industrial residue valorization under the umbrella of the circular bioeconomy (CBE) has prompted the search for further forward-thinking alternatives that encourage the mitigation of the industry's environmental footprint. From this perspective, second-life valorization (viz., thermoplastic composites) has been explored for agro-industrial waste (viz.

View Article and Find Full Text PDF

Synthesis of silver nanoparticles with antibacterial properties using a one-pot green approach that harnesses the natural reducing and capping properties of cinnamon () bark extract is presented in this work. Silver nitrate was the sole chemical reagent employed in this process, acting as the precursor salt. Gas Chromatography-Mass Spectroscopy (GC-MS), High-Performance Liquid Chromatography (HPLC) analysis, and some phytochemical tests demonstrated that cinnamaldehyde is the main component in the cinnamon bark extract.

View Article and Find Full Text PDF

Microplastic (MP) accumulation in the environment is accelerating rapidly, which has led to their effects on both the ecosystem and human life garnering much attention. This study is the first to examine the degradation of high-density polyethylene (HDPE) MPs via photoelectrocatalysis (PEC) using a TiO-modified boron-doped diamond (BDD/TiO) photoanode. This study was divided into three stages: (i) preparation of the photoanode through electrophoretic deposition of synthetic TiO nanoparticles on a BDD electrode; (ii) characterization of the modified photoanode using electrochemical, structural, and optical techniques; and (iii) degradation of HDPE MPs by electrochemical oxidation and photoelectrocatalysis on bare and modified BDD electrodes under dark and UV light conditions.

View Article and Find Full Text PDF

Marine sediments are a useful environmental assessment matrix as they naturally trap toxic substances of anthropogenic origin and thus have higher concentrations of these than the surrounding water. Therefore, developing methods for the sensitive, accurate, and inexpensive quantification of these substances is important, as the traditional techniques have various disadvantages. The current study evaluated the effectiveness of an in situ bismuth-modified carbon-fiber microelectrode (voltamperometric sensor) to simultaneously detect Pb, Cd, and Zn in marine sediments from Puerto Jeli in El Oro Province, Ecuador.

View Article and Find Full Text PDF

Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: ) constitute an alternative treatment, much is still unknown.

View Article and Find Full Text PDF

In recent years, semiconductor hollow spheres have gained much attention due to their unique combination of morphological, chemical, and physico-chemical properties. In this work, we report for the first time the synthesis of BiFeO3 hollow spheres by a facile hydrothermal treatment method. The mechanism of formation of pure phase BiFeO3 hollow spheres is investigated systematically by variation of synthetic parameters such as temperature and time, ratio and amount of precursors, pressure, and calcination procedures.

View Article and Find Full Text PDF

Background: Carbapenem-resistant , particularly isolates classified as sequence-type 258 (ST258), are multidrug-resistant strains that are strongly associated with poor-prognosis nosocomial infections, as current therapeutic options are limited and ineffective. In recent years, phage therapy has emerged as a promising treatment option for these scenarios.

Methodology And Results: We report the isolation and characterization of three new phages against ST258 strains recovered from Machángara river wastewater.

View Article and Find Full Text PDF

Natural and renewable resources from plants or animals are an important source of biomaterials due to their biocompatibility and high availability. Lignin is a biopolymer present in the biomass of plants, where it is intertwined and cross-linked with other polymers and macromolecules in the cell walls, generating a lignocellulosic material with potential applications. We have prepared lignocellulosic-based nanoparticles with an average size of 156 nm that exhibit a high photoluminescence signal when excited at 500 nm with emission in the near-infrared (NIR) region at 800 nm.

View Article and Find Full Text PDF

Herein, biochar from biomass residues is demonstrated as active materials for the catalytic cracking of waste motor oil into diesel-like fuels. Above all, alkali-treated rice husk biochar showed great activity with a 250% increase in the kinetic constant compared to the thermal cracking. It also showed better activity than synthetic materials, as previously reported.

View Article and Find Full Text PDF

Extensive plastic production has become a serious environmental and health problem due to the lack of efficient treatment of plastic waste. Polyethylene terephthalate (PET) is one of the most used polymers and is accumulating in landfills or elsewhere in nature at alarming rates. In recent years, enzymatic degradation of PET by PETase (PETase), a cutinase-like enzyme, has emerged as a promising strategy to completely depolymerize this polymer into its building blocks.

View Article and Find Full Text PDF

In this work, the photochemical reduction method was used at 440 or 540 nm excitation wavelengths to optimize the deposition of silver nanoparticles on the diatom surface as a potential DNA biosensor. The as-synthesized nanocomposites were characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), fluorescence microscopy, and Raman spectroscopy. Our results revealed a 5.

View Article and Find Full Text PDF

Andean Toads of the genus Osornophryne are suspected to have direct development on the basis of clutch and egg features. In this work, we describe the morphology of Osornophryne occidentalis embryos from a nest collected in the field. Several traits are similar to those reported in brachycephaloid Eleutherodactylus coqui and other direct-developing lineages.

View Article and Find Full Text PDF

Magnetic nanoparticles based on iron oxides (MNPs-Fe) have been proposed as photothermal agents (PTAs) within antibacterial photothermal therapy (PTT), aiming to counteract the vast health problem of multidrug-resistant bacterial infections. We present a quick and easy green synthesis (GS) to prepare MNPs-Fe harnessing waste. Orange peel extract (organic compounds) was used as a reducing, capping, and stabilizing agent in the GS, which employed microwave (MW) irradiation to reduce the synthesis time.

View Article and Find Full Text PDF

Background: The global COVID-19 pandemic initiated in Ecuador with the patient zero in February 2020 and since more than 40,000 persons have been tested positive to the virus, leaving some 3,500 deceased, while approximately about 10,500 persons above annual average numbers died within March to May. A strict lockdown was applied by mid-March, which resulted to a severe economic crisis in the country. Although during the lockdown.

View Article and Find Full Text PDF