Site-specific functionalization of the secondary C-B bond of 1,2-bis-boronic esters has been proven to be an important method for the generation of 1,2-bis-functionalized compounds in a highly stereoselective manner. We have explored previously unknown secondary selective alkenylation, allylation, alkynylation and addition to aryl vinyl trifluoromethane, which proceeds via a novel reaction mechanism: alkoxide-mediated photoredox activation to generate secondary radicals over the primary one.
View Article and Find Full Text PDFTransition metal-free carbonyl directed boron-Wittig reaction of α-bis(boryl)carbanions with the corresponding isatins or with the α-keto esters/amides was achieved to access alkenyl oxindoles in good yield and high stereoselectivity.
View Article and Find Full Text PDFOrganoboron compounds have a wide-range of applications in synthetic methodologies, natural products, and bioactive molecule synthesis. The sensitivity of boronic acid toward most synthetic reagents makes it necessary to introduce a protecting group before its utilization. Benchtop stable MIDA boronates have been found compatible with various common synthetic reagents which opens the doors for the synthesis of various small building blocks, natural products, and bioactive compounds.
View Article and Find Full Text PDFOver the last century, there have been considerable developments in organoboron chemistry due to the stability, non-toxicity, and easy commercial availability of various boronic esters. Several organoboron reagents have emerged and play an increasingly important role in everyday organic synthesis. Among them, alkynyl boron compounds have attracted significant attention due to their easy synthesis and diverse reactivity.
View Article and Find Full Text PDF