Interactions between histones, which package DNA in eukaryotes, and nuclear proteins such as the high mobility group nucleosome-binding protein HMGN1 are important for regulating access to DNA. HMGN1 is a highly charged and intrinsically disordered protein (IDP) that is modified at several sites by posttranslational modifications (PTMs) - acetylation, phosphorylation and ADP-ribosylation. These PTMs are thought to affect cellular localisation of HMGN1 and its ability to bind nucleosomes; however, little is known about how these PTMs regulate the structure and function of HMGN1 at a molecular level.
View Article and Find Full Text PDFBackground: Few studies have examined whether the healthcare needs of people living with rare diseases are being met. This study explores the experiences of Australian adults living with rare diseases in relation to diagnosis, information provision at the time of diagnosis, use of health and support services and involvement in research on their condition.
Methods: The survey respondents are self-selected from the population of Australian residents aged 18 years and over who are living with a rare disease.
Chromatin assembly involves the combined action of histone chaperones and ATP-dependent motor proteins. Here, we investigate the mechanism of nucleosome assembly with a purified chromatin assembly system containing the histone chaperone NAP1 and the ATP-dependent motor protein ACF. These studies revealed the rapid formation of a stable nonnucleosomal histone-DNA intermediate that is converted into canonical nucleosomes by ACF.
View Article and Find Full Text PDFNat Struct Mol Biol
February 2005
CHD1 is a chromodomain-containing protein in the SNF2-like family of ATPases. Here we show that CHD1 exists predominantly as a monomer and functions as an ATP-utilizing chromatin assembly factor. This reaction involves purified CHD1, NAP1 chaperone, core histones and relaxed DNA.
View Article and Find Full Text PDFEosinophil infiltration of the lung is a feature of both allergic and nonallergic asthma, and IL-5 is the key cytokine regulating the production and activation of these cells. Despite many studies focusing on the IL-5 promoter in both humans and mice there is as yet no clear picture of how the IL-5 gene is regulated. The aim of this study was to determine if distal regulatory elements contribute to appropriate regulation of the human IL-5 (hIL-5) gene.
View Article and Find Full Text PDF