Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many malignant and nonmalignant diseases. However, chronic graft-versus-host disease (cGVHD) remains a significant cause of late morbidity and mortality after allogeneic HSCT. cGVHD often manifests as autoimmune syndrome.
View Article and Find Full Text PDFGiven that donor T cells from a transplant contribute both the desired graft-versus-tumour (GVT) effect and detrimental graft-versus-host disease (GVHD), strategies to separate GVHD and GVT activity are a major clinical goal. We have previously demonstrated that in vivo administration of a recombinant (r)IL-7/HGFβ hybrid cytokine, consisting of interleukin-7 (IL-7, IL7) and the β-chain of hepatocyte growth factor (HGFβ), significantly inhibits the growth of cancer cells in murine tumour models. The antit-umour effect of rIL-7/HGFβ is related to a marked infiltration T cells in the tumour tissues.
View Article and Find Full Text PDFMol Cancer Ther
October 2016
Both IL7 and IL15 have become important candidate immunomodulators for cancer treatment. However, IL7 or IL15 used alone suffers from shortcomings, such as short serum half-life and limited antitumor effect. We have cloned and expressed a recombinant (r) IL7/IL15 fusion protein in which IL7 and IL15 are linked by a flexible linker.
View Article and Find Full Text PDFA prolonged period of T-cell recovery is the major challenge in hematopoietic stem cell transplantation (HSCT). Thymic epithelial cells (TECs) are the major component of the thymic microenvironment for T-cell generation. However, TECs undergo degeneration over time.
View Article and Find Full Text PDFTolerance induction, and thus prevention or treatment of autoimmune disease, is not only associated with the persistent presence of self-antigen in the thymus, but also relies on a functional thymus; however, the thymus undergoes profound age-dependent involution. Thymic epithelial cells (TECs) are the major component of the thymic microenvironment for T cell development. We have reported that mouse embryonic stem cells (mESCs) can be induced in vitro to generate thymic epithelial progenitors (TEPs) that further develop into functional TECs in vivo.
View Article and Find Full Text PDFWe have reported that in vivo administration of the hybrid cytokine rIL-7/HGFβ or rIL-7/HGFα, which contains interleukin-7 (IL-7) and the β- or α-chain of hepatocyte growth factor (HGF), significantly enhances thymopoiesis in mice after bone marrow transplantation. We have shown that the HGF receptor, c-Met, is involved in the effect of the hybrid cytokines. To address the role of c-Met signalling in thymocyte development and recovery, we generated conditional knockout (cKO) mice in which c-Met was specifically deleted in T cells by crossing c-Met(ft/ft) mice with CD4-Cre transgenic mice.
View Article and Find Full Text PDFThe T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Tbx1, a T-box transcription factor, is an important gene for the human congenital disorder 22q11.2 deletion syndrome.
View Article and Find Full Text PDFT cell immunodeficiency is a major complication of bone marrow (BM) transplantation (BMT). Therefore, approaches to enhance T cell reconstitution after BMT are required. We have purified a hybrid cytokine, consisting of IL-7 and the β-chain of hepatocyte growth factor (HGFβ) (IL-7/HGFβ), from a unique long-term BM culture system.
View Article and Find Full Text PDFSmokeless tobacco products have been associated with increased risks of oro-pharyngeal cancers, due in part to the presence of tobacco-specific nitrosamines (TSNAs) such as 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). These potent carcinogens are formed during tobacco curing and as a result of direct nitrosation reactions that occur in the oral cavity. In the current work we describe the isolation and characterization of a hybridoma secreting a high-affinity, NNK-specific monoclonal antibody.
View Article and Find Full Text PDFFoot-and-mouth disease virus (FMDV) is a highly contagious pathogen that causes severe morbidity and economic losses to the livestock industry in many countries. The oral and respiratory mucosae are the main ports of entry of FMDV, so the stimulation of local immunity in these tissues may help prevent initial infection and viral spread. E.
View Article and Find Full Text PDFMany RNA viruses encode error-prone polymerases which introduce mutations into B and T cell epitopes, providing a mechanism for immunological escape. When regions of hypervariability are found within immunodominant epitopes with no known function, they are referred to as "decoy epitopes," which often deceptively imprint the host's immune response. In this work, a decoy epitope was identified in the foot-and-mouth disease virus (FMDV) serotype O VP1 G-H loop after multiple sequence alignment of 118 isolates.
View Article and Find Full Text PDFPeptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O(1) BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E.
View Article and Find Full Text PDFIn order to augment responses to respiratory vaccines in swine, various adjuvants were intranasally coadministered with a foot-and-mouth disease virus (FMDV) antigen to pigs. Detoxified Escherichia coli enterotoxins LTK63 and LTR72 enhanced antigen-specific mucosal and systemic immunity, demonstrating their efficacy as adjuvants for nonreplicating antigens upon intranasal immunization in swine.
View Article and Find Full Text PDFMycoplasma gallisepticum infection in chickens leads to tracheitis, airsacculitis, poor feed conversion and reduced egg production, resulting in considerable economic hardship on the poultry industry. The chemokines and cytokines responsible for recruitment, activation and proliferation of leukocytes in affected tissues have not been described. In the current study, chemokine and cytokine gene expression profiles were investigated in tracheas of chickens inoculated with M.
View Article and Find Full Text PDFSynthetic peptides derived from the G-H loop of the foot and mouth disease virus (FMDV) capsid protein VP1 are relatively poor at recapitulating the native conformation present in the virus, and thus are often poor immunogens. We hypothesized that a candidate mucosal vaccine against FMDV could be developed using the non-toxic Pseudomonas aeruginosa exotoxin A (ntPE) to deliver the G-H loop in its native conformation. An added benefit of this approach is the potential for ntPE to serve as an effective carrier/adjuvant molecule for delivery of the fusion protein across the epithelial barrier by virtue of its capacity to bind to CD91.
View Article and Find Full Text PDFColonization of the avian respiratory tract with Mycoplasma gallisepticum results in a profound inflammatory response in the trachea, air sacs, conjunctiva, and lungs. A live attenuated M. gallisepticum vaccine strain, GT5, was previously shown to be protective in chickens upon challenge; however, the mechanisms by which this vaccine and others confer protection remain largely unknown.
View Article and Find Full Text PDF