Evidence is shown that cosolvent mixtures control the coacervation of mixtures of oppositely charged polyelectrolytes. Binary and ternary solvent mixtures lead to non-monotonic solubility as a function of the average dielectric constants of the solvent mixtures. These data are rationalized by considering both electrostatic-driven phase separation and solvophobic-driven phase separation using group contribution effects on solubility parameters.
View Article and Find Full Text PDFThe Block Copolymer Database (BCDB) is a platform that allows users to search, submit, visualize, benchmark, and download experimental phase measurements and their associated characterization information for di- and multiblock copolymers. To the best of our knowledge, there is no widely accepted data model for publishing experimental and simulation data on block copolymer self-assembly. This proposed data schema with traceable information can accommodate any number of blocks and at the time of publication contains over 5400 block copolymer total melt phase measurements mined from the literature and manually curated and simulation data points of the phase diagram generated from self-consistent field theory that can rapidly be augmented.
View Article and Find Full Text PDFPolymer blends can yield superior materials by merging the unique properties of their components. However, these mixtures often phase separate, leading to brittleness. While compatibilizers can toughen these blends, their vast design space makes optimization difficult.
View Article and Find Full Text PDFSynthetic polymers, in contrast to small molecules and deterministic biomacromolecules, are typically ensembles composed of polymer chains with varying numbers, lengths, sequences, chemistry, and topologies. While numerous approaches exist for measuring pairwise similarity among small molecules and sequence-defined biomacromolecules, accurately determining the pairwise similarity between two polymer ensembles remains challenging. This work proposes the earth mover's distance (EMD) metric to calculate the pairwise similarity score between two polymer ensembles.
View Article and Find Full Text PDFThe scaling relationship of complex coacervate core micelles (C3Ms) has been investigated experimentally and theoretically. The C3Ms are formed by mixing two oppositely charged block copolyelectrolyte solutions (i.e.
View Article and Find Full Text PDFThe Community Resource for Innovation in Polymer Technology (CRIPT) data model is designed to address the high complexity in defining a polymer structure and the intricacies involved with characterizing material properties.
View Article and Find Full Text PDFThe structural characterization of branched polymers still poses experimental challenges despite their technological potential. This lack of clarity is egregious in linear low-density polyethylene (LLDPE), a common industrial plastic. Here, we design a coarse-grain, implicit solvent molecular dynamics model for LLDPE in 1,2,4-trichlorobenzene, a canonical good solvent, that replicates all-atom simulations and experiments.
View Article and Find Full Text PDFThe application of machine learning to the materials domain has traditionally struggled with two major challenges: a lack of large, curated data sets and the need to understand the physics behind the machine-learning prediction. The former problem is particularly acute in the polymers domain. Here we aim to simultaneously tackle these challenges through the incorporation of scientific knowledge, thus, providing improved predictions for smaller data sets, both under interpolation and extrapolation, and a degree of explainability.
View Article and Find Full Text PDFThe interfacial tension of coacervates, the liquidlike phase composed of oppositely charged polymers that coexists at equilibrium with a supernatant, forms the basis for multiple technologies. Here we present a comprehensive set of experiments and molecular dynamics simulations to probe the effect of molecular mass on interfacial tension γ, far from the critical point, and derive γ=γ_{∞}(1-h/N), where N is the degree of polymerization, γ_{∞} is the infinite molecular mass limit, and h is a constant that physically corresponds to the number of monomers of one chain within the coacervate correlation volume.
View Article and Find Full Text PDFA longstanding goal in polymer rheology is to develop a physical picture that relates the growth of mechanical moduli during polymer crystallization to that of a structure. Here, we utilize simultaneous mechanical rheology and optical microscopy, with augmentation by deterministic reconstruction and stochastic simulations, to study isothermal crystallization in isotactic polypropylene. We observe the nucleation and growth of the surface and bulk spherulites, which are initially isolated and then impinge to form clusters and superstructures that eventually span the gap.
View Article and Find Full Text PDFPatchy particles have emerged as an attractive model to mimic phase separation and self-assembly of globular proteins solutions, colloidal patchy particles, and molecular fluids where directional interactions are operative. In our previous work, we extensively explored the coupling of directional and isotropic interactions on both the phase separation and self-assembly in a system of patchy particles with five spots. Here, we extend this work to consider different patch valences and isotropic interaction strengths with an emphasis on self-assembly.
View Article and Find Full Text PDFWe are entering an era where large volumes of scientific data, coupled with algorithmic and computational advances, can reduce both the time and cost of developing new materials. This emerging field known as materials informatics has gained acceptance for a number of classes of materials, including metals and oxides. In the particular case of polymer science, however, there are important challenges that must be addressed before one can start to deploy advanced machine learning approaches for designing new materials.
View Article and Find Full Text PDFStructured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications.
View Article and Find Full Text PDFThe interactions of molecules and particles in solution often involve an interplay between isotropic and highly directional interactions that lead to a mutual coupling of phase separation and self-assembly. This situation arises, for example, in proteins interacting through hydrophobic and charged patch regions on their surface and in nanoparticles with grafted polymer chains, such as DNA. As a minimal model of complex fluids exhibiting this interaction coupling, we investigate spherical particles having an isotropic interaction and a constellation of five attractive patches on the particle's surface.
View Article and Find Full Text PDFWith advances in anisotropic particle synthesis, particle shape is now a feasible parameter for tuning suspension properties. However, there is a need to determine how these newly synthesized particles affect suspension properties and a need to solve the inverse problem of inferring the particle shape from property measurements. Either way, accurate suspension property predictions are required.
View Article and Find Full Text PDFNanostructured, responsive hydrogels formed due to electrostatic interactions have promise for applications such as drug delivery and tissue mimics. These physically cross-linked hydrogels are composed of an aqueous solution of oppositely charged triblocks with charged end-blocks and neutral, hydrophilic mid-blocks. Due to their electrostatic interactions, the end-blocks microphase separate and form physical cross-links that are bridged by the mid-blocks.
View Article and Find Full Text PDFA complex coacervate is a fluid phase that results from the electrostatic interactions between two oppositely charged macromolecules. The nature of the coacervate core structure of hydrogels and micelles formed from complexation between pairs of diblock or triblock copolymers containing oppositely charged end-blocks as a function of polymer and salt concentration was investigated. Both ABA triblock copolymers of poly[(allyl glycidyl ether)-b-(ethylene oxide)-b-(allyl glycidyl ether)] and analogous poly[(allyl glycidyl ether)-b-(ethylene oxide)] diblock copolymers, which were synthesized to be nearly one-half of the symmetrical triblock copolymers, were studied.
View Article and Find Full Text PDFWe herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross-linking the P2VP domains, thereby connecting glassy PS discs with pH-sensitive hydrogel actuators.
View Article and Find Full Text PDF