Publications by authors named "Debosree Pal"

Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells.

View Article and Find Full Text PDF

The capability of pluripotent embryonic stem cells (ESCs) to proliferate and differentiate into specific lineages makes them an important avenue of research in the field of cell therapy as well as a useful model to study patterns of differentiation and gene expression, recapitulating many events that occur during the very early stages of development of the mammalian embryo. With striking similarities that exist between inherently programmed embryonic development of the nervous system in vivo and the differentiation of ESCs in vitro, they have already been used to treat locomotive and cognitive deficits caused by brain injury in rodents. A suitable differentiation model thus empowers us with all these opportunities.

View Article and Find Full Text PDF
Article Synopsis
  • The long noncoding RNA (lncRNA) Mrhl plays a significant role in the differentiation and commitment of mouse neuronal progenitors during brain development.
  • Mrhl is expressed in neuronal progenitor populations and its depletion results in premature differentiation of these cells.
  • Key transcription factors PAX6 and NFAT4 have been shown to bind and regulate Mrhl expression, indicating their critical roles in controlling neuronal lineage development.
View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have been well-established to act as regulators and mediators of development and cell fate specification programs. LncRNA Mrhl (meiotic recombination hotspot locus) has been shown to act in a negative feedback loop with WNT signaling to regulate male germ cell meiotic commitment. In our current study, we have addressed the role of Mrhl in development and differentiation using mouse embryonic stem cells (mESCs) as our model system of study.

View Article and Find Full Text PDF

Since the annotation of the mouse genome (FANTOM project) [Kawai J et al (2001) Functional annotation of a full-length mouse cDNA collection. Nature 409(6821):685-690] or the human genome [An integrated encyclopedia of DNA elements in the human genome. (2012) Nature 489(7414):57-74; Harrow J et al (2012) GENCODE: the reference human genome annotation for the ENCODE project.

View Article and Find Full Text PDF

For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc.

View Article and Find Full Text PDF

Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis.

View Article and Find Full Text PDF