Initially provided as an alternative to evaluation of serum analytes and nuchal translucency for the assessment of pregnancies at high risk of trisomy 21, cell-free DNA screening for fetal aneuploidy, also referred to as noninvasive prenatal screening, can now also screen for fetal sex chromosome anomalies such as monosomy X as early as 9 to 10 weeks of gestation. Early identification of Turner syndrome, a sex chromosome anomaly resulting from the complete or partial absence of the second X chromosome, allows medical interventions such as optimizing obstetrical outcomes, hormone replacement therapy, fertility preservation and support, and improved neurocognitive outcomes. However, cell-free DNA screening for sex chromosome anomalies and monosomy X in particular is associated with high false-positive rates and low positive predictive value.
View Article and Find Full Text PDFChromosomal microarray (CMA) is now widely used as first-tier testing for the detection of copy number variants (CNVs) and absence of heterozygosity (AOH) in patients with multiple congenital anomalies (MCA), autism spectrum disorder (ASD), developmental delay (DD), and/or intellectual disability (ID). Chromosome analysis is commonly used to complement CMA in the detection of balanced genomic aberrations. However, the cost-effectiveness and the impact on clinical management of chromosome analysis concomitant with CMA were not well studied, and there is no consensus on how to best utilize these two tests.
View Article and Find Full Text PDF