Correctly identifying perturbed biological pathways is a critical step in uncovering basic disease mechanisms and developing much-needed therapeutic strategies. However, whether current tools are optimal for unbiased discovery of relevant pathways remains unclear. Here, we create "Benchmark" to critically evaluate existing tools and find that most function sub-optimally.
View Article and Find Full Text PDFNaturally occurring canine invasive urinary carcinoma (iUC) closely resembles human muscle invasive bladder cancer in terms of histopathology, metastases, response to therapy, and low survival rate. The heterogeneous nature of the disease has led to the association of large numbers of risk loci in humans, however most are of small effect. There exists a need for new and accurate animal models of invasive bladder cancer.
View Article and Find Full Text PDFPet dogs develop spontaneous cancers at a rate estimated to be five times higher than that of humans, providing a unique opportunity to study disease biology and evaluate novel therapeutic strategies in a model system that possesses an intact immune system and mirrors key aspects of human cancer biology. Despite decades of interest, effective utilization of pet dog cancers has been hindered by a limited repertoire of necessary cellular and molecular reagents for both in vitro and in vivo studies, as well as a dearth of information regarding the genomic landscape of these cancers. Recently, many of these critical gaps have been addressed through the generation of a highly annotated canine reference genome, the creation of several tools necessary for multi-omic analysis of canine tumours, and the development of a centralized repository for key genomic and associated clinical information from canine cancer patients, the Integrated Canine Data Commons.
View Article and Find Full Text PDFIntroduction: The domestic dog, , is quickly gaining traction as an advantageous model for use in the study of cancer, one of the leading causes of death worldwide. Naturally occurring canine cancers share clinical, histological, and molecular characteristics with the corresponding human diseases.
Methods: In this study, we take a deep-learning approach to test how similar the gene expression profile of canine glioma and bladder cancer (BLCA) tumors are to the corresponding human tumors.
Unlabelled: Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies.
View Article and Find Full Text PDFUrothelial carcinoma (UC) comprises up to 2% of all naturally occurring neoplasia in dogs and can be challenging to diagnose. MicroRNAs (miRNAs) have been reported to be dysregulated in numerous diseases, including neoplasia. MiRNA expression has been evaluated in human UC, but there is limited information regarding the miRNA transcriptome of UC in dogs.
View Article and Find Full Text PDFAn apex nodule was recently identified in the urinary bladder of Scottish Terriers being screened for bladder cancer at our institution. This prospective, single-center, case series study was performed to better characterize the apex nodule and assess the clinical importance of the nodule. Scottish Terriers ≥6 years of age with no evidence of urinary tract disease underwent urinary tract ultrasonography and urinalysis at 6-month intervals.
View Article and Find Full Text PDFBackground: Improved therapies are needed for patients with invasive urothelial carcinoma (InvUC). Tailoring treatment to molecular subtypes holds promise, but requires further study, including studies in pre-clinical animal models. Naturally-occurring canine InvUC harbors luminal and basal subtypes, mimicking those observed in humans, and could offer a relevant model for the disease in people.
View Article and Find Full Text PDFBRAF-targeted therapies including vemurafenib (Zelboraf) induce dramatic cancer remission; however, drug resistance commonly emerges. The purpose was to characterize a naturally occurring canine cancer model harboring complex features of human cancer, to complement experimental models to improve BRAF-targeted therapy. A phase I/II clinical trial of vemurafenib was performed in pet dogs with naturally occurring invasive urothelial carcinoma (InvUC) harboring the canine homologue of human The safety, MTD, pharmacokinetics, and antitumor activity were determined.
View Article and Find Full Text PDFBackground: Invasive urothelial carcinoma (iUC) is highly similar between dogs and humans in terms of pathologic presentation, molecular subtypes, response to treatment and age at onset. Thus, the dog is an established and relevant model for testing and development of targeted drugs benefiting both canine and human patients. We sought to identify gene expression patterns associated with two primary types of canine iUC tumors: those that express a common somatic mutation in the BRAF gene, and those that do not.
View Article and Find Full Text PDFThere is a great need to improve the outlook for people facing urinary bladder cancer, especially for patients with invasive urothelial carcinoma (InvUC) which is lethal in 50% of cases. Improved outcomes for patients with InvUC could come from advances on several fronts including emerging immunotherapies, targeted therapies, and new drug combinations; selection of patients most likely to respond to a given treatment based on molecular subtypes, immune signatures, and other characteristics; and prevention, early detection, and early intervention. Progress on all of these fronts will require clinically relevant animal models for translational research.
View Article and Find Full Text PDFBackground And Purpose: Ultrasound (US) is a non-invasive, non-radiographic imaging technique with high spatial and temporal resolution that can be used for localizing soft-tissue structures and tumors in real-time during radiotherapy (RT) (inter- and intra-fraction). A comprehensive approach incorporating an in-house 3D-US system within RT is presented. This system is easier to adopt into existing treatment protocols than current US based systems, with the aim of providing millimeter intra-fraction alignment errors and sensitivity to track intra-fraction bladder movement.
View Article and Find Full Text PDFBackground: B7x (B7-H4/B7S1/VTCN1), an inhibitory immune checkpoint molecule is a potential therapeutic target owing to its immunosuppressive effect and well-known expression in cancers. Immune checkpoints in canine bladder cancer are largely undefined. Here, we report the first evaluation on expression of B7x in spontaneous canine invasive bladder cancer, a novel model system for the study of invasive human urothelial carcinoma.
View Article and Find Full Text PDFPurpose: The purpose was to determine the safety and antitumor activity of a folate-tubulysin conjugate (EC0531) in a relevant preclinical animal model, dogs with naturally-occurring invasive urothelial carcinoma (iUC). Canine iUC is an aggressive cancer with high folate receptor (FR) expression similar to that in certain forms of human cancer.
Experimental Design: A 3+3 dose escalation study of EC0531 (starting dose 0.
The objective of this study was to investigate a possible mechanism of action of metronomic chlorambucil on glioma by studying the in vitro cytotoxicity and anti-angiogenic effects on glioma and endothelial cells, respectively. The in vitro LD50 and IC50 of chlorambucil were determined using human SF767 and U87-MG glioma cell lines, human microvascular endothelial cells (HMVECs) and human endothelial colony forming cells (ECFCs). Results were analyzed in the context of chlorambucil concentrations measured in the plasma of tumor-bearing dogs receiving 4 mg m-2 metronomic chlorambucil.
View Article and Find Full Text PDFBackground: In early work ambient ionization mass spectrometry (MS) revealed lipid patterns distinguishing muscle invasive bladder cancer (invasive urothelial carcinoma, InvUC) from normal urothelium. A new ambient ionization MS approach, touch spray MS (TS-MS) can rapidly generate mass spectra in real time, potentially in a point-of-care setting. A tissue sample removed from a patient is touched by a probe, and mass spectra generated within seconds.
View Article and Find Full Text PDFThere is growing evidence that molecular subtypes (e.g. luminal and basal subtypes) affect the prognosis and treatment response in patients with muscle invasive urinary bladder cancer (invasive urothelial carcinoma, iUC).
View Article and Find Full Text PDFOBJECTIVE To measure programmed cell death ligand-1 (PD-L1) mRNA expression in archived primary nodal diffuse large B-cell lymphoma (DLBCL) specimens of dogs and determine whether that expression was associated with progression-free survival time (PFST). SAMPLE Archived tumoral lymph node specimens from 42 dogs with DLBCL and lymph node specimens from 10 healthy dogs (controls). PROCEDURES Archived tumoral and control lymph node specimens underwent multiplex qPCR analysis with probes and primers against canine PD-L1 and glyceraldehyde 3-phosphate dehydrogenase (housekeeping gene) to determine PD-L1 mRNA expression.
View Article and Find Full Text PDFObjective: Metronomic (daily low-dose) chlorambucil requires further study before use in human patients with glioma. The aim of this study was to investigate distribution and safety of metronomic chlorambucil in naturally occurring canine glioma.
Methods: Eight client-owned (pet) dogs with newly diagnosed spontaneous glioma were prospectively enrolled.
The development of targeted therapies and the resurgence of immunotherapy offer enormous potential to dramatically improve the outlook for patients with invasive urothelial carcinoma (InvUC). Optimization of these therapies, however, is crucial as only a minority of patients achieve dramatic remission, and toxicities are common. With the complexities of the therapies, and the growing list of possible drug combinations to test, highly relevant animal models are needed to assess and select the most promising approaches to carry forward into human trials.
View Article and Find Full Text PDFAnti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate.
View Article and Find Full Text PDFGenomic analyses are defining numerous new targets for cancer therapy. Therapies aimed at specific genetic and epigenetic targets in cancer cells as well as expanded development of immunotherapies are placing increased demands on animal models. Traditional experimental models do not possess the collective features (cancer heterogeneity, molecular complexity, invasion, metastasis, and immune cell response) critical to predict success or failure of emerging therapies in humans.
View Article and Find Full Text PDF