Publications by authors named "Deborah Sterling"

To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane Cl- /HCO3(-) anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 HCO3(-) transport activity, as AE1 moves bicarbonate either into or out of the cell.

View Article and Find Full Text PDF

Bicarbonate is not freely permeable to membranes. Yet, bicarbonate must be moved across membranes, as part of CO2 metabolism and to regulate cell pH. Mammalian cells ubiquitously express bicarbonate transport proteins to facilitate the transmembrane bicarbonate flux.

View Article and Find Full Text PDF

COOH-terminal cytoplasmic tails of chloride/bicarbonate anion exchangers (AE) bind cytosolic carbonic anhydrase II (CAII) to form a bicarbonate transport metabolon, a membrane protein complex that accelerates transmembrane bicarbonate flux. To determine whether interaction with CAII affects the downregulated in adenoma (DRA) chloride/bicarbonate exchanger, anion exchange activity of DRA-transfected HEK-293 cells was monitored by following changes in intracellular pH associated with bicarbonate transport. DRA-mediated bicarbonate transport activity of 18 +/- 1 mM H+ equivalents/min was inhibited 53 +/- 2% by 100 mM of the CAII inhibitor, acetazolamide, but was unaffected by the membrane-impermeant carbonic anhydrase inhibitor, 1-[5-sulfamoyl-1,3,4-thiadiazol-2-yl-(aminosulfonyl-4-phenyl)]-2,6-dimethyl-4-phenyl-pyridinium perchlorate.

View Article and Find Full Text PDF

Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbonate transport was monitored in transfected HEK293 cells. Expression of the inactive CAII V143Y mutant blocked the interaction between endogenous cytosolic CAII and AE1, AE2, and AE3 and inhibited their transport activity (53 +/- 3, 49 +/- 10, and 35 +/- 1% inhibition, respectively).

View Article and Find Full Text PDF