Publications by authors named "Deborah Shan-Krauer"

Ubiquitin/ISG15-conjugating enzyme E2L6 (UBE2L6) is a critical enzyme in ISGylation, a post-translational protein modification that conjugates the ubiquitin-like modifier, interferon-stimulated gene 15 (ISG15), to target substrates. Previous gene expression studies in acute promyelocytic leukemia (APL) cells showed that all-trans-retinoic acid (ATRA) altered the expression of many genes, including UBE2L6 (200-fold) and other members of the ISGylation pathway. Through gene expression analyses in a cohort of 98 acute myeloid leukemia (AML) patient samples and in primary neutrophils from healthy donors, we found that UBE2L6 gene expression is reduced in primary AML cells compared with normal mature granulocytes.

View Article and Find Full Text PDF

Autophagy is an intracellular degradation system that ensures a dynamic recycling of a variety of building blocks required for self-renewal, homeostasis, and cell survival under stress. We used primary acute myeloid leukemia (AML) samples and human AML cell lines to investigate the regulatory mechanisms of autophagy and its role in AML differentiation. We found a significantly lower expression of key autophagy- (ATG-) related genes in primary AML as compared to healthy granulocytes, an increased autophagic activity during all- retinoic acid- (ATRA-) induced neutrophil differentiation, and an impaired AML differentiation upon inhibition of ATG3, ATG4D, and ATG5.

View Article and Find Full Text PDF

The hematopoietic Ets-domain transcription factor PU.1/SPI1 orchestrates myeloid, B- and T-cell development, and also supports hematopoietic stem cell maintenance. Although PU.

View Article and Find Full Text PDF

In an mRNA profiling screen performed to unveil novel mechanisms of leukemogenesis, we found that the sentrin-specific protease 5 (SENP5) was significantly repressed in clinical acute myeloid leukemia when compared to healthy neutrophil samples. SENP5 is an enzyme that targets and cleaves small ubiquitin-like modifier (SUMO) residues from SUMOylated proteins. Further investigation with AML neutrophil differentiation cell models showed increased SENP5 expression upon induction of differentiation; in contrast, knocking down SENP5 resulted in significantly attenuated neutrophil differentiation.

View Article and Find Full Text PDF