The gastrointestinal disease cryptosporidiosis, caused by the genus , is a common cause of diarrheal diseases in children, particularly in developing countries and frequently fatal in immunocompromised individuals. ()-specific bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) has been a molecular target for inhibitor design. (.
View Article and Find Full Text PDFHepatopancreatic microsporidiosis (HPM), caused by the microsporidium Ecytonucleospora hepatopenaei (EHP) leads to retarded growth and enhanced susceptibility to other diseases in shrimp resulting in a major loss for the shrimp industry worldwide. It is little understood how EHP infects its host and hijacks its cellular machinery to replicate and exert clinical manifestations in infected shrimp. Since the initial record of HPM, histopathology and polymerase chain reaction (PCR)-based assays were developed for the detection of EHP to prevent spread of the disease.
View Article and Find Full Text PDFRecent advances in the in vitro cultivation of Cryptosporidium parvum using hollow fiber bioreactor technology (HFB) have permitted continuous growth of parasites that complete all life cycle stages. The method provides access to all stages of the parasite and provides a method for non-animal production of oocysts for use in clinical trials. Here we examined the effect of long-term (>20 months) in vitro culture on virulence-factors, genome conservation, and in vivo pathogenicity of the host by in vitro cultured parasites.
View Article and Find Full Text PDFRecent advances on the development of bumped kinase inhibitors for treatment of cryptosporidiosis have focused on the 5-aminopyrazole-4-carboxamide scaffold, due to analogs that have less hERG inhibition, superior efficacy, and strong safety profiles. Three compounds, BKI-1770, -1841, and -1708, showed strong efficacy in C. parvum infected mice.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2022
Infection with spp. can cause severe diarrhea, leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed.
View Article and Find Full Text PDFThis is a review of the development of bumped-kinase inhibitors (BKIs) for the therapy of One Health parasitic apicomplexan diseases. Many apicomplexan infections are shared between humans and livestock, such as cryptosporidiosis and toxoplasmosis, as well as livestock only diseases such as neosporosis. We have demonstrated proof-of-concept for BKI therapy in livestock models of cryptosporidiosis (newborn calves infected with Cryptosporidium parvum), toxoplasmosis (pregnant sheep infected with Toxoplasma gondii), and neosporosis (pregnant sheep infected with Neospora caninum).
View Article and Find Full Text PDFThe protozoan parasite sp. is a leading cause of diarrheal disease in those with compromised or underdeveloped immune systems, particularly infants and toddlers in resource-poor localities. As an enteric pathogen, sp.
View Article and Find Full Text PDFApicomplexan parasites cause severe disease in both humans and their domesticated animals. Since these parasites readily develop drug resistance, development of new, effective drugs to treat infection caused by these parasites is an ongoing challenge for the medical and veterinary communities. We hypothesized that invertebrate-bacterial symbioses might be a rich source of anti-apicomplexan compounds because invertebrates are susceptible to infections with gregarines, parasites that are ancestral to all apicomplexans.
View Article and Find Full Text PDFBumped Kinase Inhibitors, targeting Calcium-dependent Protein Kinase 1 in apicomplexan parasites with a glycine gatekeeper, are promising new therapeutics for apicomplexan diseases. Here we will review advances, as well as challenges and lessons learned regarding efficacy, safety, and pharmacology that have shaped our selection of pre-clinical candidates.
View Article and Find Full Text PDFMethods Mol Biol
November 2020
Cryptosporidiosis, caused by the apicomplexan parasite Cryptosporidium parvum, is a moderate-to-severe diarrheal disease now recognized as one of the leading causes of morbidity and mortality in livestock globally, and in humans living in resource-limited parts of the world, particularly those with AIDS or malnourished individuals. This recognition has fueled efforts for the discovery of effective therapeutics. While recent progress in drug discovery has been encouraging, there are presently no acceptably effective parasite-specific drugs for the disease.
View Article and Find Full Text PDFStem-cell-derived organoids recapitulate in vivo physiology of their original tissues, representing valuable systems to model medical disorders such as infectious diseases. Cryptosporidium, a protozoan parasite, is a leading cause of diarrhoea and a major cause of child mortality worldwide. Drug development requires detailed knowledge of the pathophysiology of Cryptosporidium, but experimental approaches have been hindered by the lack of an optimal in vitro culture system.
View Article and Find Full Text PDFAllergic reaction is a common clinical picture in the Emergency Department (ED). Most allergic reactions are from food or drugs. A detailed history is an integral aspect of determining the causative agent of an allergy.
View Article and Find Full Text PDFImprovements have been made to the safety and efficacy of bumped kinase inhibitors, and they are advancing toward human and animal use for treatment of cryptosporidiosis. As the understanding of bumped kinase inhibitor pharmacodynamics for cryptosporidiosis therapy has increased, it has become clear that better compounds for efficacy do not necessarily require substantial systemic exposure. We now have a bumped kinase inhibitor with reduced systemic exposure, acceptable safety parameters, and efficacy in both the mouse and newborn calf models of cryptosporidiosis.
View Article and Find Full Text PDFThere is a substantial need for novel therapeutics to combat the widespread impact caused by Crytosporidium infection. However, there is a lack of knowledge as to which drug pharmacokinetic (PK) characteristics are key to generate an in vivo response, specifically whether systemic drug exposure is crucial for in vivo efficacy. To identify which PK properties are correlated with in vivo efficacy, we generated physiologically based PK models to simulate systemic and gastrointestinal drug concentrations for a series of bumped kinase inhibitors (BKIs) that have nearly identical in vitro potency against Cryptosporidium but display divergent PK properties.
View Article and Find Full Text PDFcalcium-dependent protein kinase 1 (CDPK1) is a promising target for drug development against cryptosporidiosis. We report a series of low-nanomolar CDPK1 5-aminopyrazole-4-carboxamide (AC) scaffold inhibitors that also potently inhibit growth Correlation between anti-CDPK1 and growth inhibition, as previously reported for pyrazolopyrimidines, was not apparent. Nonetheless, lead AC compounds exhibited a substantial reduction of parasite burden in the neonatal mouse cryptosporidiosis model when dosed at 25 mg/kg.
View Article and Find Full Text PDFBumped kinase inhibitors (BKIs) of Cryptosporidium parvum calcium-dependent protein kinase 1 (CpCDPK1) are leading candidates for treatment of cryptosporidiosis-associated diarrhea. Potential cardiotoxicity related to anti-human ether-à-go-go potassium channel (hERG) activity of the first-generation anti-Cryptosporidium BKIs triggered further testing for efficacy. A luminescence assay adapted for high-throughput screening was used to measure inhibitory activities of BKIs against C.
View Article and Find Full Text PDFCryptosporidiosis, caused by the apicomplexan parasite Cryptosporidium parvum, is a diarrheal disease that has produced a large global burden in mortality and morbidity in humans and livestock. There are currently no consistently effective parasite-specific pharmaceuticals available for this disease. Bumped kinase inhibitors (BKIs) specific for parasite calcium-dependent protein kinases (CDPKs) have been shown to reduce infection in several parasites having medical and veterinary importance, including Toxoplasma gondii, Plasmodium falciparum, and C.
View Article and Find Full Text PDFHost defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs.
View Article and Find Full Text PDFCryptosporidium parvum is one of the main causes of diarrhea in neonatal calves resulting in significant morbidity and economic losses for producers worldwide. We have previously demonstrated efficacy of a new class of antimicrobial antibody fusions in a neonatal mouse model for C. parvum infection.
View Article and Find Full Text PDFThe apicomplexan parasite Cryptosporidium parvum is an important cause of diarrhea in humans and cattle, and it can persistently infect immunocompromised hosts. No consistently effective parasite-specific pharmaceuticals or immunotherapies for control of cryptosporidiosis are presently available. The innate immune system represents the first line of host defense against a range of infectious agents, including parasitic protozoa.
View Article and Find Full Text PDFAt present no completely effective treatments are available for Cryptosporidium parvum infections in humans and livestock. Based on previous data showing the neutralizing potential of a panel of monoclonal antibodies developed against C. parvum, and based on the fact that innate immune peptides and enzymes have anticryptosporidial activity, we engineered several of these antibodies into antibody-biocide fusion proteins.
View Article and Find Full Text PDFThe biological basis for the specificity of host infectivity patterns of Cryptosporidium spp., in particular C. hominis and C.
View Article and Find Full Text PDFThe objective of this study was to determine whether changes in the ileal intraepithelial lymphocyte (TEL) phenotype and function occurred prior to development of diarrhea in Cryptosporidium parvum-infected calves. Calves were orally inoculated with 10(8) oocysts and maintained in enteric pathogen-free conditions until their use in experiments. Age-matched uninfected calves were used for comparisons.
View Article and Find Full Text PDFCryptosporidium parvum is an important cause of diarrhea in humans and calves and can persistently infect immunocompromised hosts. Presently, there are no consistently effective parasite-specific drugs for cryptosporidiosis. We hypothesized that neutralizing monoclonal antibodies (MAbs) targeting the apical complex and surface antigens CSL, GP25-200, and P23 could passively immunize against cryptosporidiosis.
View Article and Find Full Text PDF