High-grade serous ovarian carcinoma (HGSOC) is the most genomically complex cancer, characterized by ubiquitous mutation, profound chromosomal instability, and heterogeneity. The mutational processes driving chromosomal instability in HGSOC can be distinguished by specific copy number signatures. To develop clinically relevant models of these mutational processes we derived 15 continuous HGSOC patient-derived organoids (PDOs) and characterized them using bulk transcriptomic, bulk genomic, single-cell genomic, and drug sensitivity assays.
View Article and Find Full Text PDFChromosomal instability is a major challenge to patient stratification and targeted drug development for high-grade serous ovarian carcinoma (HGSOC). Here we show that somatic copy number alterations (SCNAs) in frequently amplified HGSOC cancer genes significantly correlate with gene expression and methylation status. We identify five prevalent clonal driver SCNAs (chromosomal amplifications encompassing MYC, PIK3CA, CCNE1, KRAS and TERT) from multi-regional HGSOC data and reason that their strong selection should prioritise them as key biomarkers for targeted therapies.
View Article and Find Full Text PDFBackground: The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment.
View Article and Find Full Text PDFThe transcription factor FOXM1 binds to sequence-specific motifs on DNA (C/TAAACA) through its DNA-binding domain (DBD) and activates proliferation- and differentiation-associated genes. Aberrant overexpression of FOXM1 is a key feature in oncogenesis and progression of many human cancers. Here--from a high-throughput screen applied to a library of 54,211 small molecules--we identify novel small molecule inhibitors of FOXM1 that block DNA binding.
View Article and Find Full Text PDFHigh-dose (HD) IL-2 therapy in patients with cancer increases the general population of Tregs, which are positive for CD4, CD25, and the Treg-specific marker Foxp3. It is unknown whether specific subsets of Tregs are activated and expanded during HD IL-2 therapy or whether activation of any particular Treg subset correlates with clinical outcome. Here, we evaluated Treg population subsets that were induced in patients with melanoma following HD IL-2 therapy.
View Article and Find Full Text PDFBackground: Clinical benefit from cytotoxic chemotherapy for metastatic papillary thyroid carcinoma (PTC) is disappointing, and effective therapeutic approaches for these patients are urgently needed. Because kinase-activating mutations in the BRAF proto-oncogene commonly occur in advanced PTC, and inhibition of BRAF(V600E) has shown promising clinical activity in melanoma, BRAF inhibitor therapy may be an effective strategy to treat metastatic PTC.
Methods: The dose escalation portion of a first-in-human, phase I study of vemurafenib, a selective RAF inhibitor, included three patients with metastatic PTC harboring the BRAF(V600E) mutation.
We present a patient with metastatic BRAF-mutated melanoma who achieved long-term stabilization of leptomeningeal disease (LMD) with sequential whole-brain radiation therapy and vemurafenib. A 53-year-old woman with melanoma that harbored the BRAF V600E mutation and had that metastasized to multiple lymph nodes, lungs, breast, and subcutaneous tissue had developed symptomatic LMD 16 months after starting vemurafenib treatment despite achieving a substantial response at the existing metastatic sites. Vemurafenib was discontinued for 7 days, she received whole-brain radiation therapy (30 Gy in 10 fractions), and 7 days after completing the radiation therapy, she resumed vemurafenib therapy.
View Article and Find Full Text PDFBackground: The forkhead transcription factor FOXM1 is a key regulator of the cell cycle. It is frequently over-expressed in cancer and is emerging as an important therapeutic target. In breast cancer FOXM1 expression is linked with estrogen receptor (ERα) activity and resistance to endocrine therapies, with high levels correlated with poor prognosis.
View Article and Find Full Text PDFThe synthesis, biophysical and biological evaluation of a series of G-quadruplex interacting small molecules based on a N,N'-bis(quinolinyl)pyridine-2,6-dicarboxamide scaffold is described. The synthetic analogues were evaluated for their ability to stabilize telomeric G-quadruplex DNA, some of which showed very high stabilization potential associated with high selectivity over double-stranded DNA. The compounds exhibited growth arrest of cancer cells with detectable selectivity over normal cells.
View Article and Find Full Text PDFGene regulatory networks inferred from RNA abundance data have generated significant interest, but despite this, gene network approaches are used infrequently and often require input from bioinformaticians. We have assembled a suite of tools for analysing regulatory networks, and we illustrate their use with microarray datasets generated in human endothelial cells. We infer a range of regulatory networks, and based on this analysis discuss the strengths and limitations of network inference from RNA abundance data.
View Article and Find Full Text PDFTranscription factors are proteins that bind specifically to defined DNA sequences to promote gene expression. Targeting transcription factors with small molecules to modulate the expression of certain genes has been notoriously difficult to achieve. The natural product thiostrepton is known to reduce the transcriptional activity of FOXM1, a transcription factor involved in tumorigenesis and cancer progression.
View Article and Find Full Text PDFThere is considerable interest in the structure and function of G-quadruplex nucleic acid secondary structures, their cellular functions, and their potential as therapeutic targets. G-Quadruplex sequence motifs are prevalent in gene promoter regions and it has been hypothesized that G-quadruplex structure formation is associated with the transcriptional status of the downstream gene. Using a functional cell-based assay, we have identified two novel G-quadruplex ligands that reduce the transcription of a luciferase reporter driven from the G-quadruplex-containing c-KIT promoter.
View Article and Find Full Text PDFBackground: Identifying the functional importance of the millions of single nucleotide polymorphisms (SNPs) in the human genome is a difficult challenge. Therefore, a reverse strategy, which identifies functionally important SNPs by virtue of the bimodal abundance across the human population of the SNP-related mRNAs will be useful. Those mRNA transcripts that are expressed at two distinct abundances in proportion to SNP allele frequency may warrant further study.
View Article and Find Full Text PDFAims: Pre-eclampsia affects 5-7% of pregnancies, and is a major cause of maternal and foetal death. Elevated serum levels of placentally derived splice variants of the vascular endothelial growth factor (VEGF) receptor, soluble fms-like tyrosine kinase-1 (sFLT1), are strongly implicated in the pathogenesis but, as yet, no underlying mechanism has been described. An excessive inflammatory-like response is thought to contribute to the maternal endothelial cell dysfunction that characterizes pre-eclampsia.
View Article and Find Full Text PDFHerein, we demonstrate the design, synthesis, biophysical properties, and preliminary biological evaluation of 6-substituted indenoisoquinolines as a new class of G-quadruplex stabilizing small molecule ligands. We have synthesized 6-substituted indenoisoquinolines 1a-e in two steps from commercially available starting materials with excellent yields. The G-quadruplex stabilization potential of indenoisoquinolines 1a-e was evaluated by fluorescence resonance energy transfer-melting analysis, which showed that indenoisoquinolines show a high level of stabilization of various G-quadruplex DNA structures.
View Article and Find Full Text PDFFenofibrate is a synthetic ligand for the nuclear receptor peroxisome proliferator-activated receptor (PPAR) alpha and has been widely used in the treatment of metabolic disorders, especially hyperlipemia, due to its lipid-lowering effect. The molecular mechanism of lipid-lowering is relatively well defined: an activated PPARalpha forms a PPAR-RXR heterodimer and this regulates the transcription of genes involved in energy metabolism by binding to PPAR response elements in their promoter regions, so-called "trans-activation". In addition, fenofibrate also has anti-inflammatory and anti-athrogenic effects in vascular endothelial and smooth muscle cells.
View Article and Find Full Text PDFSome drugs affect secretion of secreted proteins (e.g. cytokines) released from target cells, but it remains unclear whether these proteins act in an autocrine manner and directly effect the cells on which the drugs act.
View Article and Find Full Text PDFAccording to most authors, dermatofibrosarcoma protuberans (DFSP) and giant cell fibroblastoma (GCF) represent the adult and juvenile forms, respectively, of the same disease entity, as evidenced by similar morphology, an identical chromosomal translocation, and CD34 positivity. It has been shown that DFSP and nuchal-type fibroma (NTF) (which is also CD34-positive) are related lesions, and that there might possibly be a continuum between the two. In addition, NTF exhibits CD99 positivity.
View Article and Find Full Text PDFWe propose a computational strategy for discovering gene networks affected by a chemical compound. Two kinds of DNA microarray data are assumed to be used: One dataset is short time-course data that measure responses of genes following an experimental treatment. The other dataset is obtained by several hundred single gene knock-downs.
View Article and Find Full Text PDFInterferon-alpha (IFN-alpha), in conjunction with ribavirin, is the current standard for the treatment of chronic hepatitis C virus (HCV) infection. This treatment requires frequent dosing, with a significant risk of the development of anti-IFN-alpha neutralizing antibodies that correlates with lack of efficacy or relapse. We have developed an IFN-alpha linked to the Fc region of human IgG1 for improved half-life and less frequent dosing.
View Article and Find Full Text PDFIntensive Crit Care Nurs
April 2004
The contribution nurses make to the management of critically ill patients is usually appraised through the use of concepts such as 'patient dependency' or 'nursing workload'. These concepts fail to address the knowledge, skills and experience of nurses and consequently fail to acknowledge the risk presented by critically ill patients. This paper describes the development of a tool that attempts to measure risk and the process of risk management undertaken by nurses who coordinate the shifts and lead the nursing team.
View Article and Find Full Text PDF