Publications by authors named "Deborah S Parris"

Human cytomegalovirus (CMV) causes significant disease in immunocompromised patients and serious birth defects if acquired in utero. Available CMV antivirals target the viral DNA polymerase, have significant toxicities, and suffer from resistance. New drugs targeting different pathways would be beneficial.

View Article and Find Full Text PDF

Background: Bortezomib is an FDA-approved proteasome inhibitor, and oncolytic herpes simplex virus-1 (oHSV) is a promising therapeutic approach for cancer. We tested the impact of combining bortezomib with oHSV for antitumor efficacy.

Experimental Design: The synergistic interaction between oHSV and bortezomib was calculated using Chou-Talalay analysis.

View Article and Find Full Text PDF

Background: During herpesvirus replication, terminase packages viral DNA into capsids. The subunits of herpes simplex virus terminase, UL15, UL28, and UL33, assemble in the cytoplasm prior to nuclear import of the complex.

Methods: To detect similar interactions between human cytomegalovirus terminase subunits, the orthologous proteins UL89, UL56, and UL51 were expressed in HEK-293 T cells (via transfection) or insect cells (via baculovirus infection) and subcellular localizations were detected by cellular fractionation and confocal microscopy.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes a lethal hemorrhagic fever for which there is no approved effective treatment or prevention strategy. EBOV VP35 is a virulence factor that blocks innate antiviral host responses, including the induction of and response to alpha/beta interferon. VP35 is also an RNA silencing suppressor (RSS).

View Article and Find Full Text PDF

Human cytomegalovirus encodes an alkaline nuclease, UL98, that is highly conserved among herpesviruses and has both endonuclease (endo) and exonuclease (exo) activities. This protein is thought to be important for viral replication and therefore represents a potential target for antiviral development; however, little is known about its structure or role in viral replication. Comparative structural modelling was used to build a model of UL98 based on the known structure of shutoff and exonuclease protein from Kaposi's sarcoma-associated herpesvirus.

View Article and Find Full Text PDF

We discuss how the results of presteady-state and steady-state kinetic analysis of the polymerizing and excision activities of herpes simplex virus type 1 (HSV-1) DNA polymerase have led to a better understanding of the mechanisms controlling fidelity of this important model replication polymerase. Despite a poorer misincorporation frequency compared to other replicative polymerases with intrinsic 3' to 5' exonuclease (exo) activity, HSV-1 DNA replication fidelity is enhanced by a high kinetic barrier to extending a primer/template containing a mismatch or abasic lesion and by the dynamic ability of the polymerase to switch the primer terminus between the exo and polymerizing active sites. The HSV-1 polymerase with a catalytically inactivated exo activity possesses reduced rates of primer switching and fails to support productive replication, suggesting a novel means to target polymerase for replication inhibition.

View Article and Find Full Text PDF

The processing of lagging-strand intermediates has not been demonstrated in vitro for herpes simplex virus type 1 (HSV-1). Human flap endonuclease-1 (Fen-1) was examined for its ability to produce ligatable products with model lagging-strand intermediates in the presence of the wild-type or exonuclease-deficient (exo(-)) HSV-1 DNA polymerase (pol). Primer/templates were composed of a minicircle single-stranded DNA template annealed to primers that contained 5' DNA flaps or 5' annealed DNA or RNA sequences.

View Article and Find Full Text PDF

RNA-induced silencing is a potent innate antiviral defense strategy in plants, and suppression of silencing is a hallmark of pathogenic plant viruses. However, the impact of silencing as a mammalian antiviral defense mechanism and the ability of mammalian viruses to suppress silencing in natural host cells have remained controversial. The ability of herpes simplex virus type 1 (HSV-1) to suppress silencing was examined in a transient expression system that employed an imperfect hairpin to target degradation of transcripts encoding enhanced green fluorescent protein (EGFP).

View Article and Find Full Text PDF

Results suggest a high probability that abasic (AP) sites occur at least once per herpes simplex virus type 1 (HSV-1) genome. The parameters that control the ability of HSV-1 DNA polymerase (pol) to engage in AP translesion synthesis (TLS) were examined because AP lesions could influence the completion and fidelity of viral DNA synthesis. Pre-steady-state kinetic experiments demonstrated that wildtype (WT) and exonuclease-deficient (exo-) pol could incorporate opposite an AP lesion, but full TLS required absence of exo function.

View Article and Find Full Text PDF

We have examined the kinetics of incorporation of acyclovir triphosphate by the herpes simplex virus-1 DNA polymerase holoenzyme (Pol-UL42) and the human mitochondrial DNA polymerase using transient kinetic methods. For each enzyme, we compared the kinetic parameters for acyclovir to those governing incorporation of dGTP. The favorable ground state dissociation constant (6 microM) and rate of polymerization (10 s(-1)) afford efficient incorporation of acyclovir triphosphate by the Pol-UL42 enzyme.

View Article and Find Full Text PDF

The herpes simplex virus type 1 UL42 DNA polymerase processivity factor interacts physically with UL9 and enhances its ability to unwind short, partially duplex DNA. In this report, ATP hydrolysis during translocation of UL9 on single-stranded (ss) or partially duplex DNA was examined in the presence and absence of UL42 to determine the effect of UL42 on the catalytic function of UL9. Our studies reveal that a homodimer of UL9 is sufficient for DNA translocation coupled to ATP hydrolysis, and the steady-state ATPase catalytic rate was greater on partially duplex DNA than on ss DNA in the presence or absence of UL42.

View Article and Find Full Text PDF

UL30, the herpes simplex virus type-1 DNA polymerase, stalls at the base preceding a cisplatin crosslinked 1,2 d(GpG) dinucleotide and engages in a futile cycle of incorporation and excision by virtue of its 3'-5' exonuclease. Therefore, we examined the translesion synthesis (TLS) potential of an exonuclease-deficient UL30 (UL30D368A). We found that UL30D368A did not perform complete translesion synthesis but incorporated one nucleotide opposite the first base of the adduct.

View Article and Find Full Text PDF

Nucleotide incorporation by the herpes simplex virus type 1 DNA polymerase catalytic subunit (pol) is less faithful than for most replicative DNA polymerases, despite the presence of an associated 3'- to 5'-exonuclease (exo) activity. To determine the aspects of fidelity affected by the exo activity, nucleotide incorporation and mismatch extension frequency for purified wild-type and an exo-deficient mutant (D368A) pol were compared using primer/templates that varied at only a single position. For both enzymes, nucleotide discrimination during incorporation occurred predominantly at the level of K(m) for nucleotide and was the major contributor to fidelity.

View Article and Find Full Text PDF

The origin (ori)-binding protein of herpes simplex virus type 1 (HSV-1), encoded by the UL9 open reading frame, has been shown to physically interact with a number of cellular and viral proteins, including three HSV-1 proteins (ICP8, UL42, and UL8) essential for ori-dependent DNA replication. In this report, it is demonstrated for the first time that the DNA polymerase processivity factor, UL42 protein, provides accessory function to the UL9 protein by enhancing the 3'-to-5' helicase activity of UL9 on partially duplex nonspecific DNA substrates. UL42 fails to enhance the unwinding activity of a noncognate helicase, suggesting that enhancement of unwinding requires the physical interaction between UL42 and UL9.

View Article and Find Full Text PDF

Using a minicircle DNA primer-template, the wild-type catalytic subunit of herpes simplex virus type 1 (HSV-1) DNA polymerase (pol) was shown to lack significant strand displacement activity with or without its processivity factor, UL42. However, an exonuclease-deficient (exo(-)) pol (D368A) was capable of slow strand displacement. Although UL42 increased the rate (2/s) and processivity of strand displacement by exo(-) pol, the rate was slower than that for gap-filling synthesis.

View Article and Find Full Text PDF

Pre-steady-state and steady-state kinetics of nucleotide incorporation and excision were used to assess potential mechanisms by which the fidelity of the herpes simplex virus type 1 DNA polymerase catalytic subunit (Pol) is enhanced by its processivity factor, UL42. UL42 had no effect on the pre-steady-state rate constant for correct nucleotide incorporation (150 s(-1)) nor on the primary rate-limiting conformational step. However, the equilibrium dissociation constant for the enzyme in a stable complex with primer-template was 44 nm for Pol and 7.

View Article and Find Full Text PDF

The DNA polymerase holoenzyme of herpes simplex virus type 1 (HSV-1) is a stable heterodimer consisting of a catalytic subunit (Pol) and a processivity factor (UL42). HSV-1 UL42 differs from most DNA polymerase processivity factors in possessing an inherent ability to bind to double-stranded DNA. It has been proposed that UL42 increases the processivity of Pol by directly tethering it to the primer and template (P/T).

View Article and Find Full Text PDF