Selecting optimal formulation conditions for monoclonal antibodies for first time in human clinical trials is challenging due to short timelines and reliance on predictive assays to ensure product quality and adequate long-term stability. Accelerated stability studies are considered to be the gold standard for excipient screening, but they are relatively low throughput and time consuming. High throughput screening (HTS) techniques allow for large amounts of data to be collected quickly and easily, and can be used to screen solution conditions for early formulation development.
View Article and Find Full Text PDFOne of the most significant challenges in developing therapeutic monoclonal antibodies (mAbs) is their unpredictable solubilities and viscosities at the high concentrations required for subcutaneous delivery. This challenge has motivated the development of screening assays that rapidly identify mAb variants with minimal self-association propensities and/or formulation conditions that suppress mAb self-association. Here we report an improved version of self-interaction nanoparticle spectroscopy (SINS)capable of characterizing both repulsive and attractive self-interactions between diverse mAbs.
View Article and Find Full Text PDFPoly(amido amine) (PAMAM) dendrimers have shown promise in oral drug delivery. Conjugation of SN38 to PAMAM dendrimers has the potential to improve its oral absorption while minimizing gastrointestinal toxicity. In this work we evaluated G3.
View Article and Find Full Text PDFIn this work, we describe the application of two different high-throughput screening (HTS) techniques that can be used to determine protein stability during early formulation development. Differential scanning fluorescence (DSF) and differential static light scattering (DSLS) are used to determine the conformational and colloidal stability of therapeutic monoclonal antibodies (mAbs) during thermal denaturation in a high-throughput fashion. DSF utilizes SYPRO Orange, a polarity-sensitive extrinsic fluorescent probe, to monitor protein unfolding.
View Article and Find Full Text PDFPurpose: This study investigates the mechanisms of G3.5 poly (amido amine) dendrimer cellular uptake, intracellular trafficking, transepithelial transport and tight junction modulation in Caco-2 cells in the context of oral drug delivery.
Methods: Chemical inhibitors blocking clathrin-, caveolin- and dynamin-dependent endocytosis pathways were used to investigate the mechanisms of dendrimer cellular uptake and transport across Caco-2 cells using flow cytometry and confocal microscopy.