Publications by authors named "Deborah Rathbone"

The monoterpene camphor is produced in glandular secretory trichomes of the medicinal plant , which also produces the antimalarial drug artemisinin. We have found that, depending on growth conditions, camphor can accumulate at levels ranging from 1- 10% leaf dry weight (LDW) in the Artemis F1 hybrid, which has been developed for commercial production of artemisinin at up to 1% LDW. We discovered that a camphor null (camphor-0) phenotype segregates in the progeny of self-pollinated Artemis material.

View Article and Find Full Text PDF

Artemisinin, a sesquiterpene lactone produced by glandular secretory trichomes, is the active ingredient in the most effective treatment for uncomplicated malaria caused by parasites. Other metabolites in or related species, particularly flavonoids, have been proposed to either act as antimalarials on their own or act synergistically with artemisinin to enhance antimalarial activity. We identified a mutation that disrupts the CHALCONE ISOMERASE 1 (CHI1) enzyme that is responsible for the second committed step of flavonoid biosynthesis.

View Article and Find Full Text PDF

Lignocellulose forms the structural framework of woody plant biomass and represents the most abundant carbon source in the biosphere. Turnover of woody biomass is a critical component of the global carbon cycle, and the enzymes involved are of increasing industrial importance as industry moves away from fossil fuels to renewable carbon resources. Shipworms are marine bivalve molluscs that digest wood and play a key role in global carbon cycling by processing plant biomass in the oceans.

View Article and Find Full Text PDF

Artemisinin is a plant natural product produced by Artemisia annua and the active ingredient in the most effective treatment for malaria. Efforts to eradicate malaria are increasing demand for an affordable, high-quality, robust supply of artemisinin. We performed deep sequencing on the transcriptome of A.

View Article and Find Full Text PDF

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a widely used explosive and a serious environmental pollutant. Nineteen strains of Rhodococcus spp. capable of utilizing RDX as the sole nitrogen source have been isolated.

View Article and Find Full Text PDF

The widespread presence in the environment of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), one of the most widely used military explosives, has raised concern owing to its toxicity and recalcitrance to degradation. To investigate the potential of plants to remove RDX from contaminated soil and water, we engineered Arabidopsis thaliana to express a bacterial gene xplA encoding an RDX-degrading cytochrome P450 (ref. 1).

View Article and Find Full Text PDF

Several independent studies of bacterial degradation of nitrate ester explosives have demonstrated the involvement of flavin-dependent oxidoreductases related to the old yellow enzyme (OYE) of yeast. Some of these enzymes also transform the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT). In this work, catalytic capabilities of five members of the OYE family were compared, with a view to correlating structure and function.

View Article and Find Full Text PDF

Biotransformations of alkaloids over the last decade have continued to encompass a wide variety of substrates and enzymes. The elucidation of novel alkaloid biosynthetic and catabolic pathways will continue to furnish new biocatalysts for the synthetic organic chemist. Furthermore, an improved understanding of the genetic and biochemical basis of metabolic pathways will also permit the engineering of pathways in plants and other heterologous hosts for the production of therapeutically important alkaloids.

View Article and Find Full Text PDF

Alkaloids continue to provide mankind with a plethora of medicines, poisons and potions. Because many valuable drugs are derived from such natural compounds, there is much interest in their transformation to provide new compounds or intermediates for the synthesis of new or improved drugs. This review aims to provide a survey of alkaloid transformations, and concerns microbial transformations and microbially expressed recombinant plant enzymes and their biotechnological applications.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3qd7iamrtkh665lhfsjvm6bokb461m7k): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once