Am J Respir Crit Care Med
October 2011
Rationale: Wounded alveolus resident cells are identified in human and experimental acute respiratory distress syndrome models. Poloxamer 188 (P188) is an amphiphilic macromolecule shown to have plasma membrane-sealing properties in various cell types.
Objectives: To investigate whether P188 (1) protects alveolus resident cells from necrosis and (2) is associated with reduced ventilator-induced lung injury in live rats, isolated perfused rat lungs, and scratch and stretch-wounded alveolar epithelial cells.
Am J Physiol Lung Cell Mol Physiol
December 2010
Once excess liquid gains access to air spaces of an injured lung, the act of breathing creates and destroys foam and thereby contributes to the wounding of epithelial cells by interfacial stress. Since cells are not elastic continua, but rather complex network structures composed of solid as well as liquid elements, we hypothesize that plasma membrane (PM) wounding is preceded by a phase separation, which results in blebbing. We postulate that interventions such as a hypertonic treatment increase adhesive PM-cytoskeletal (CSK) interactions, thereby preventing blebbing as well as PM wounds.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2009
We measured the effects of raising perfusate pH on ventilator-induced cell wounding and repair in ex vivo mechanically ventilated hypercapnic rat lungs. Lungs were randomized to one of three perfusate groups: 1) unbuffered hypercapnic acidosis, 2) bicarbonate-buffered hypercapnia, or 3) tris-hydroxymethyl aminomethane (THAM)-buffered hypercapnia. The membrane-impermeant label propidium iodide was added to the perfusate either during or after injurious ventilation providing a means to subsequently identify transiently wounded and permanently wounded cells in optical sections of subpleural alveoli.
View Article and Find Full Text PDFAlthough the molecular basis for the pathophysiology of nonalcoholic steatohepatitis (NASH) is poorly understood, insulin resistance and mitochondrial dysfunction are physiologic hallmarks of this condition. We sought evidence of a transcriptional or pretranscriptional basis for insulin resistance and mitochondrial dysfunction through measurement of hepatic gene expression (messenger RNA [mRNA]) using high-density synthetic oligonucleotide microarray analysis (Hu6800 GeneChip, Affymetrix, CA). Global hepatic gene expression was determined in snap-frozen liver biopsy specimens from 4 groups: (1) patients with cirrhotic-stage NASH (n = 6), (2) patients with cirrhosis caused by hepatitis C virus (HCV) (n = 6), (3) patients with cirrhosis secondary to primary biliary cirrhosis (PBC) (n = 6), and (4) healthy controls (n = 6).
View Article and Find Full Text PDFTreatment of acute cellular rejection (ACR) is associated with increased viral load, more severe histologic recurrence, and diminished patient and graft survival after liver transplantation for hepatitis C virus (HCV). Recurrence of HCV may be difficult to distinguish histologically from ACR. Because the immunologic mechanisms of ACR and HCV recurrence are likely to differ, we hypothesized that ACR is associated with the expression of a specific subset of immune activation genes that may serve as a diagnostic indicator of ACR and provide mechanistic insight into the pathophysiology of ACR and recurrence of HCV.
View Article and Find Full Text PDFThe pathophysiology of hepatic steatosis, a prerequisite of nonalcoholic fatty liver disease, is poorly understood. Because very-low-density lipoprotein (VLDL) formation is the chief route of hepatic lipid export, we hypothesized that the synthesis of apoB-100, a rate-determining step in hepatic VLDL formation, may be altered in patients with nonalcoholic steatohepatitis (NASH). This study evaluated the relative synthesis rates of apolipoprotein B-100 (apoB-100) in patients with NASH and in lean and body mass index (BMI)-matched (obese) controls without NASH.
View Article and Find Full Text PDF