Publications by authors named "Deborah Pinney"

The Eukaryotic Pathogen Genomics Database Resource (EuPathDB, http://eupathdb.org) is a collection of databases covering 170+ eukaryotic pathogens (protists & fungi), along with relevant free-living and non-pathogenic species, and select pathogen hosts. To facilitate the discovery of meaningful biological relationships, the databases couple preconfigured searches with visualization and analysis tools for comprehensive data mining via intuitive graphical interfaces and APIs.

View Article and Find Full Text PDF

Toxoplasma gondii is among the most prevalent parasites worldwide, infecting many wild and domestic animals and causing zoonotic infections in humans. T. gondii differs substantially in its broad distribution from closely related parasites that typically have narrow, specialized host ranges.

View Article and Find Full Text PDF

EuPathDB (http://eupathdb.org) resources include 11 databases supporting eukaryotic pathogen genomic and functional genomic data, isolate data and phylogenomics. EuPathDB resources are built using the same infrastructure and provide a sophisticated search strategy system enabling complex interrogations of underlying data.

View Article and Find Full Text PDF

FungiDB (http://FungiDB.org) is a functional genomic resource for pan-fungal genomes that was developed in partnership with the Eukaryotic Pathogen Bioinformatic resource center (http://EuPathDB.org).

View Article and Find Full Text PDF

AmoebaDB (http://AmoebaDB.org) and MicrosporidiaDB (http://MicrosporidiaDB.org) are new functional genomic databases serving the amoebozoa and microsporidia research communities, respectively.

View Article and Find Full Text PDF

EuPathDB (http://EuPathDB.org; formerly ApiDB) is an integrated database covering the eukaryotic pathogens of the genera Cryptosporidium, Giardia, Leishmania, Neospora, Plasmodium, Toxoplasma, Trichomonas and Trypanosoma. While each of these groups is supported by a taxon-specific database built upon the same infrastructure, the EuPathDB portal offers an entry point to all these resources, and the opportunity to leverage orthology for searches across genera.

View Article and Find Full Text PDF

TriTrypDB (http://tritrypdb.org) is an integrated database providing access to genome-scale datasets for kinetoplastid parasites, and supporting a variety of complex queries driven by research and development needs. TriTrypDB is a collaborative project, utilizing the GUS/WDK computational infrastructure developed by the Eukaryotic Pathogen Bioinformatics Resource Center (EuPathDB.

View Article and Find Full Text PDF

PlasmoDB (http://PlasmoDB.org) is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale.

View Article and Find Full Text PDF

GiardiaDB (http://GiardiaDB.org) and TrichDB (http://TrichDB.org) house the genome databases for Giardia lamblia and Trichomonas vaginalis, respectively, and represent the latest additions to the EuPathDB (http://EuPathDB.

View Article and Find Full Text PDF

ToxoDB (http://ToxoDB.org) is a genome and functional genomic database for the protozoan parasite Toxoplasma gondii. It incorporates the sequence and annotation of the T.

View Article and Find Full Text PDF

The mouse PancChip, a microarray developed for studying endocrine pancreatic development and diabetes, represents over 13,000 cDNAs. After computationally assigning the cDNAs on the array to known genes, manual curation of the remaining sequences identified 211 novel transcripts. In microarray experiments, we found that 196 of these transcripts were expressed in total pancreas and/or pancreatic islets.

View Article and Find Full Text PDF

The Endocrine Pancreas Consortium was formed in late 1999 to derive and sequence cDNA libraries enriched for rare transcripts expressed in the mammalian endocrine pancreas. Over the past 3 years, the Consortium has generated 20 cDNA libraries from mouse and human pancreatic tissues and deposited >150,000 sequences into the public expressed sequence tag databases. A special effort was made to enrich for cDNAs from the endocrine pancreas by constructing libraries from isolated islets.

View Article and Find Full Text PDF

We have investigated the mechanism by which expression of the v-myc oncogene interferes with the competence of primary quail myoblasts to undergo terminal differentiation. Previous studies have established that quail myoblasts transformed by myc oncogenes are severely impaired in the accumulation of mRNAs encoding the myogenic transcription factors Myf-5, MyoD and Myogenin. However, the mechanism responsible for such a repression remains largely unknown.

View Article and Find Full Text PDF

Over the past 5 years, microarrays have greatly facilitated large-scale analysis of gene expression levels. Although these arrays were not specifically geared to represent tissues and pathways known to be affected by diabetes, they have been used in both type 1 and type 2 diabetes research. To prepare a tool that is particularly useful in the study of type 1 diabetes, we have assembled a nonredundant set of 3,400 clones representing genes expressed in the mouse pancreas or pathways known to be affected by diabetes.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) is a secreted signaling molecule for tissue patterning and stem cell specification in vertebrate embryos. Shh mediates both long-range and short-range signaling responses in embryonic tissues through the activation and repression of target genes by its Gli transcription factor effectors. Despite the well-established functions of Shh signaling in development and human disease, developmental target genes of Gli regulation are virtually unknown.

View Article and Find Full Text PDF