Publications by authors named "Deborah Pinchev"

Centrosomes organize microtubule (MT) arrays and are comprised of centrioles surrounded by ordered pericentriolar proteins. Centrioles are barrel-shaped structures composed of MTs, and as basal bodies they template the formation of cilia/flagella. Defects in centriole assembly can lead to ciliopathies and genome instability.

View Article and Find Full Text PDF

Background: The assembly of a robust microtubule-based mitotic spindle is a prerequisite for the accurate segregation of chromosomes to progeny. Spindle assembly relies on the concerted action of centrosomes, spindle microtubules, molecular motors, and nonmotor spindle proteins.

Results: Here we use an RNA-interference screen of the human centrosome proteome to identify novel regulators of spindle assembly.

View Article and Find Full Text PDF

Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation.

View Article and Find Full Text PDF

Huntington's disease is caused by an expanded polyglutamine tract in huntingtin protein, leading to accumulation of huntingtin in the nuclei of striatal neurons. The 18 amino-acid amino-terminus of huntingtin is an amphipathic alpha helical membrane-binding domain that can reversibly target to vesicles and the endoplasmic reticulum (ER). The association of huntingtin to the ER is affected by ER stress.

View Article and Find Full Text PDF

Since the early 1990s, DNA triplet repeat expansions have been found to be the cause in an ever increasing number of genetic neurologic diseases. A subset of this large family of genetic diseases has the expansion of a CAG DNA triplet in the open reading frame of a coding exon. The result of this DNA expansion is the expression of expanded glutamine amino acid repeat tracts in the affected proteins, leading to the term, Polyglutamine Diseases, which is applied to this sub-family of diseases.

View Article and Find Full Text PDF

Spinocerebellar ataxia type 1 (SCA1) is a dominant neurodegenerative disease caused by the expression of mutant ataxin-1 containing an expanded polyglutamine tract. Ataxin-1 is a nuclear protein that localizes to punctate inclusions similar to neuronal nuclear inclusions seen in many polyglutamine expansion disease proteins. We demonstrate that ataxin-1 localization to inclusions and inclusion dynamics within the nucleus are RNA and transcription dependent, but not dependent on the polyglutamine tract.

View Article and Find Full Text PDF

One of the major difficulties in mining low abundance biomarkers from serum or plasma is due to the fact that a small number of proteins such as albumin, alpha2-macroglobulin, transferrin, and immunoglobulins, may represent as much as 80% of the total serum protein. The large quantity of these proteins makes it difficult to identify low abundance proteins in serum using traditional 2-dimensional electrophoresis. We recently used a combination of multidimensional liquid chromatography and gel electrophoresis coupled to matrix-assisted laser desorption/ionization-quadrupole-time of flight and Ion Trap liquid chromatography-tandem mass spectrometry to identify protein markers in sera of Alzheimer's disease (AD), insulin resistance/type-2 diabetes (IR/D2), and congestive heart failure (CHF) patients.

View Article and Find Full Text PDF