Publications by authors named "Deborah Ortiz-Young"

We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution.

View Article and Find Full Text PDF

Understanding and manipulating fluids at the nanoscale is a matter of growing scientific and technological interest. Here we show that the viscous shear forces in nanoconfined water can be orders of magnitudes larger than in bulk water if the confining surfaces are hydrophilic, whereas they greatly decrease when the surfaces are increasingly hydrophobic. This decrease of viscous forces is quantitatively explained with a simple model that includes the slip velocity at the water surface interface.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0rrt42g5jfjp1dgm2nb0afpmb6tg31le): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once