Publications by authors named "Deborah M Cholon"

Article Synopsis
  • Hyper IgE syndrome (STAT3-HIES), also known as Job's syndrome, results from mutations in the STAT3 gene, leading to chronic respiratory infections due to compromised pulmonary defense mechanisms.
  • The study aimed to investigate how these STAT3 mutations affect the airway epithelium's ability to defend against infections, analyzing sputum properties and lung tissue from patients.
  • Findings revealed that STAT3 deficiency disrupts critical airway functions, including mucus secretion and ciliary movement, contributing to increased infection risk and inflammation in patients with this syndrome.*
View Article and Find Full Text PDF

People with cystic fibrosis (pwCF) suffer from chronic and recurring bacterial lung infections that begin very early in life and contribute to progressive lung failure. CF is caused by mutations in the CF transmembrane conductance regulator () gene, which encodes an ion channel important for maintaining the proper hydration of pulmonary surfaces. When CFTR function is ablated or impaired, airways develop thickened, adherent mucus that contributes to a vicious cycle of infection and inflammation.

View Article and Find Full Text PDF

RNF5 E3 ubiquitin ligase has multiple biological roles and has been linked to the development of severe diseases such as cystic fibrosis, acute myeloid leukemia, and certain viral infections, emphasizing the importance of discovering small-molecule RNF5 modulators for research and drug development. The present study describes the synthesis of a new benzo[]thiophene derivative, FX12, that acts as a selective small-molecule inhibitor and degrader of RNF5. We initially identified the previously reported STAT3 inhibitor, Stattic, as an inhibitor of dislocation of misfolded proteins from the endoplasmic reticulum (ER) lumen to the cytosol in ER-associated degradation.

View Article and Find Full Text PDF

The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce.

View Article and Find Full Text PDF

To find a cure for cystic fibrosis, there has been tremendous progress in the development of treatments that target the basic defect in the protein channel, CFTR. However, 10% of cystic fibrosis patients have rare CFTR mutations that are still without an approved CFTR-targeting drug. To identify relevant therapies for these patients, culture models using nasal, bronchial, and rectal tissue from individual patients allow functional, biochemical, and cellular detection of drug-rescued CFTR.

View Article and Find Full Text PDF

In cystic fibrosis (CF), defective biogenesis and activity of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to airway dehydration and impaired mucociliary clearance, resulting in chronic airway infection and inflammation. The most common CFTR mutation, F508del, results in a processing defect in which the protein is retained in the endoplasmic reticulum and does not reach the apical surface. CFTR corrector compounds address this processing defect to promote mutant CFTR transfer to the apical membrane.

View Article and Find Full Text PDF

The transmembrane Hsp40 DNAJB12 and cytosolic Hsp70 cooperate on the endoplasmic reticulum's (ER) cytoplasmic face to facilitate the triage of nascent polytopic membrane proteins for folding versus degradation. N1303K is a common mutation that causes misfolding of the ion channel CFTR, but unlike F508del-CFTR, biogenic and functional defects in N1303K-CFTR are resistant to correction by folding modulators. N1303K is reported to arrest CFTR folding at a late stage after partial assembly of its N-terminal domains.

View Article and Find Full Text PDF

Background: Current dosing strategies of CFTR modulators are based on serum pharmacokinetics, but drug concentrations in target tissues such as airway epithelia are not known. Previous data suggest that CFTR modulators may accumulate in airway epithelia, and serum pharmacokinetics may not accurately predict effects of chronic treatment.

Methods: CF (F508del homozygous) primary human bronchial epithelial (HBE) cells grown at air-liquid interface were treated for 14 days with ivacaftor plus lumacaftor or ivacaftor plus tezacaftor, followed by a 14-day washout period.

View Article and Find Full Text PDF

Deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel is the most frequent mutation causing cystic fibrosis (CF). F508del-CFTR is misfolded and prematurely degraded. Recently thymosin a-1 (Tα-1) was proposed as a single molecule-based therapy for CF, improving both F508del-CFTR maturation and function by restoring defective autophagy.

View Article and Find Full Text PDF

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel causes misfolding and premature degradation. Considering the numerous effects of the F508del mutation on the assembly and processing of CFTR protein, combination therapy with several pharmacological correctors is likely to be required to treat CF patients. Recently, it has been reported that thymosin α-1 (Tα-1) has multiple beneficial effects that could lead to a single-molecule-based therapy for CF patients with F508del.

View Article and Find Full Text PDF

Significant progress has been achieved in developing precision therapies for cystic fibrosis; however, highly effective treatments that target the ion channel, CFTR, are not yet available for many patients. As numerous CFTR therapeutics are currently in the clinical pipeline, reliable screening tools capable of predicting drug efficacy to support individualized treatment plans and translational research are essential. The utilization of bronchial, nasal, and rectal tissues from individual cystic fibrosis patients for drug testing using in vitro assays such as electrophysiological measurements of CFTR activity and evaluation of fluid movement in spheroid cultures, has advanced the prediction of patient-specific responses.

View Article and Find Full Text PDF

Cystic fibrosis (CF) results from mutations in the CF transmembrane conductance regulator (CFTR) gene, which codes for the CFTR channel protein. The most common mutation in CF is F508del, which produces a misfolded protein with diminished channel activity. The development of small-molecule CFTR-modulator compounds offers an exciting and novel approach for pharmacological treatment of CF.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a lethal recessive genetic disease caused primarily by the F508del mutation in the CF transmembrane conductance regulator (CFTR). The potentiator VX-770 was the first CFTR modulator approved by the FDA for treatment of CF patients with the gating mutation G551D. Orkambi is a drug containing VX-770 and corrector VX809 and is approved for treatment of CF patients homozygous for F508del, which has folding and gating defects.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). Newly developed "correctors" such as lumacaftor (VX-809) that improve CFTR maturation and trafficking and "potentiators" such as ivacaftor (VX-770) that enhance channel activity may provide important advances in CF therapy. Although VX-770 has demonstrated substantial clinical efficacy in the small subset of patients with a mutation (G551D) that affects only channel activity, a single compound is not sufficient to treat patients with the more common CFTR mutation, ΔF508.

View Article and Find Full Text PDF
Article Synopsis
  • Haemophilus ducreyi requires heme from human hosts for infection, utilizing TonB-dependent transporters, with HgbA being essential for early infection stages.
  • Active immunization with the HgbA protein provides complete protection in pig models of chancroid, indicating its potential as a vaccine.
  • Passive immunization using anti-nHgbA serum offers some protection against related strains, showing that antibodies can block heme acquisition but do not kill the bacteria directly.
View Article and Find Full Text PDF
Article Synopsis
  • Haemophilus ducreyi causes chancroid and relies on humans for heme, with a vaccine using the hemoglobin receptor HgbA showing effectiveness against a specific strain.
  • The study tested a new vaccine formulation (nHgbAI/MPL) and found it protected pigs from a homologous strain but not from a different strain, indicating a limit to its efficacy.
  • Despite lower antibody levels compared to the previous vaccine, the nHgbAI/MPL vaccine could block binding to the target, implying a need for a broader vaccine approach.
View Article and Find Full Text PDF

CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e.

View Article and Find Full Text PDF

In patients with chronic obstructive pulmonary disease (COPD), the lower respiratory tract is commonly colonized by bacterial pathogens, including nontypeable Haemophilus influenzae. The H. influenzae HMW1 and HMW2 adhesins are homologous proteins that promote bacterial adherence to respiratory epithelium and are the predominant targets of the host immune response.

View Article and Find Full Text PDF