Publications by authors named "Deborah L Hunter"

The use of larval zebrafish developmental testing and assessment, specifically larval zebrafish locomotor activity, has been recognized as a higher throughput testing strategy to identify developmentally toxic and neurotoxic chemicals. There are, however, no standardized protocols for this type of assay, which could result in confounding variables being overlooked. Two chemicals commonly employed during early-life stage zebrafish assays, methylene blue (antifungal agent) and dimethyl sulfoxide (DMSO, a commonly used vehicle) have been reported to affect the morphology and behavior of freshwater fish.

View Article and Find Full Text PDF

New approaches in developmental neurotoxicity (DNT) screening are needed due to the tens of thousands of chemicals requiring hazard assessments. Zebrafish (Danio rerio) are an alternative vertebrate model for DNT testing, but without a standardized protocol for larval behavioral assays, comparison of results among laboratories is challenging. To evaluate the congruence of protocols across laboratories, we conducted a literature review of DNT studies focusing on larval zebrafish behavior assays and cataloged experimental design consistencies.

View Article and Find Full Text PDF

With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish () larvae using a behavioral Light/Dark assay. Larvae (n = 16-24 per concentration) were exposed to each chemical (0.

View Article and Find Full Text PDF

Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet, the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of PM have been attributed in part to its capacity to elicit irritant responses.

View Article and Find Full Text PDF

As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4'-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae.

View Article and Find Full Text PDF

Organophosphate flame retardants (OPFRs) are common replacements for the phased-out polybrominated diphenyl ethers (PBDEs) and have been detected at high concentrations in environmental samples. OPFRs are structurally similar to organophosphate pesticides and may adversely affect the developing nervous system. This study evaluated the overt toxicity, uptake, and neurobehavioral effects of tris (1,3-dichloro-2-propyl) phosphate (TDCPP), tris (2-chloroethyl) phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCPP), and tris (2,3-dibromopropyl) phosphate (TDBPP) in early life stage zebrafish.

View Article and Find Full Text PDF

Reports from Japan and India and data submissions to the US EPA indicate that exposure to cholinesterase (ChE)-inhibiting organophosphorous insecticides (OP) can produce ocular toxicity, in particular long-lasting changes in retinal physiology and anatomy. We have examined the effects of a 1 year dietary exposure to the OP chlorpyrifos (CPF) on retinal structure and function. Adult male Long-Evans rats were fed CPF in their diet at the rate of 0, 1 (low), or 5 (high) mg/kg body weight/day.

View Article and Find Full Text PDF

Very little is known about the effects of chronic exposure to relatively low levels of anticholinesterase insecticides or how the effects of chronic exposure compare to those of higher, intermittent exposure. To that end, adult male rats were fed an anticholinesterase insecticide, chlorpyrifos (CPF), for 1 year at three levels of dietary exposure: 0, 1, or 5 mg/kg/day (0+oil, 1+oil, and 5+oil). In addition, half of each of these groups also received a bolus dosage of CPF in corn oil ("spiked" animals; 60 mg/kg initially and 45 mg/kg thereafter) every 2 months (0+CPF, 1+CPF, 5+CPF).

View Article and Find Full Text PDF

Cognitive and motor impairment often follow acute poisoning with an organophosphorous (OP) pesticide. However, the persistence of these effects and the conditions necessary for their appearance are not clear: two specific concerns are whether symptomatic poisoning is necessary for persistent effects, and whether inhibition of cholinesterase (ChE) activity is a protective metric of OP exposure. This study examined the effects of chronic dietary and repeated high-level acute exposure to the pesticide chlorpyrifos (diethyl 3,5,6-trichloro-2-pyridyl phosphorothionate, CPF) on learning and attention.

View Article and Find Full Text PDF

The accepted mechanism of toxicity of many organophosphorous and carbamate insecticides is inhibition of acetylcholinesterase activity. In mammals, part of the toxicity assessment usually includes monitoring blood and/or brain acetylcholinesterase inhibition. Other tissues, however, contain cholinesterase activity (i.

View Article and Find Full Text PDF