Small-angle scattering (SAS) techniques, like small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS), were used to measure and thus to validate the accuracy of a novel technology for virus sizing and concentration determination. These studies demonstrate the utility of SAS techniques for use in quality assurance measurements and as novel technology for the physical characterization of viruses.
View Article and Find Full Text PDFABSTRACT In this study, we demonstrate the effect of sample matrix composition of MS2 virus on its characterization by ESI-MS and IVDS. MS2 samples grown and purified using various techniques showed different responses on ESI-MS than that on IVDS. The LC-MS of the specific biomarker of MS2 bacteriophage from an infected Escherichia coli sample was characterized by the presence of E.
View Article and Find Full Text PDFRecombinant forms of the bacteriophage MS2 and its RNA-free (empty) MS2 capsid were analyzed in solution to determine if RNA content and/or the A (or maturation) protein play a role in the global arrangement of the virus protein shell. Analysis of the (coat) protein shell of recombinant versions of MS2 that lack the A protein revealed dramatic differences compared to wild-type MS2 in solution. Specifically, A protein-deficient virus particles form a protein shell of between 31(+/-1) A and 37(+/-1) A.
View Article and Find Full Text PDFSmall-angle neutron scattering (SANS) has been used to extend the structural characterization of the MS2 phage by examining its physical characteristics in solution. Specifically, the contrast variation technique was employed to determine the molecular weight of the individual components of the MS2 virion (protein shell and genomic RNA) and the spatial relationship of the genomic RNA to its protein shell. A consequence of this work was to evaluate a novel particle counting instrument, the integrated virus detection system (IVDS) that, in combination with SANS, has the potential to provide rapid quantitative physical characterization of unidentified viruses and phage.
View Article and Find Full Text PDF