Publications by authors named "Deborah Kuchnir Fygenson"

DNA-stabilized silver nanoclusters (AgNCs), the fluorescence emission of which can rival that of typical organic fluorophores, have made possible a new class of label-free molecular beacons for the detection of single-stranded DNA. Like fluorophore-quencher molecular beacons (FQ-MBs) AgNC-based molecular beacons (AgNC-MBs) are based on a single-stranded DNA that undergoes a conformational change upon binding a target sequence. The new conformation exposes a stretch of single-stranded DNA capable of hosting a fluorescent AgNC upon reduction in the presence of Ag(+) ions.

View Article and Find Full Text PDF

Cells are capable of a variety of dramatic stimuli-responsive mechanical behaviors. These capabilities are enabled by the pervading cytoskeletal network, an active gel composed of structural filaments (e.g.

View Article and Find Full Text PDF

Among the key goals of structural DNA nanotechnology are to build highly ordered structures self-assembled from individual DNA motifs in 1D, 2D, and finally 3D. All three of these goals have been achieved with a variety of motifs. Here, we report the design and characterization of 1D nanotubes and 2D arrays assembled from three novel DNA motifs, the 6-helix bundle (6HB), the 6-helix bundle flanked by two helices in the same plane (6HB+2), and the 6-helix bundle flanked by three helices in a trigonal arrangement (6HB+3).

View Article and Find Full Text PDF

We present the first direct observations of tile-based DNA self-assembly in solution using fluorescent nanotubes composed of a single tile. The nanotubes reach tens of microns in length by end-to-end joining rather than by sequential addition of single tiles. Their exponential length distributions withstand dilution but decay via scission upon heating, with an energy barrier Esc approximately 180kBT.

View Article and Find Full Text PDF

DNA self-assembly provides a programmable bottom-up approach for the synthesis of complex structures from nanoscale components. Although nanotubes are a fundamental form encountered in tile-based DNA self-assembly, the factors governing tube structure remain poorly understood. Here we report and characterize a new type of nanotube made from DNA double-crossover molecules (DAE-E tiles).

View Article and Find Full Text PDF

The standard model for the structure of collagen in tendon is an ascending hierarchy of bundling. Collagen triple helices bundle into microfibrils, microfibrils bundle into subfibrils, and subfibrils bundle into fibrils, the basic structural unit of tendon. This model, developed primarily on the basis of x-ray diffraction results, is necessarily vague about the cross-sectional organization of fibrils and has led to the widespread assumption of laterally homogeneous closepacking.

View Article and Find Full Text PDF