Publications by authors named "Deborah Hemming"

Stable carbon isotopes in plants can help evaluate and improve the representation of carbon and water cycles in land-surface models, increasing confidence in projections of vegetation response to climate change. Here, we evaluated the predictive skills of the Joint UK Land Environmental Simulator (JULES) to capture spatio-temporal variations in carbon isotope discrimination (ΔC) reconstructed by tree rings at 12 sites in the United Kingdom over the period 1979-2016. Modeled and measured ΔC time series were compared at each site and their relationships with local climate investigated.

View Article and Find Full Text PDF

Myzus persicae (Sulzer, Hemiptera: Aphididae) is a major global crop pest; it is the primary aphid vector for many damaging viruses and has developed resistance to most insecticides. In temperate regions, the risk of widespread crop infection and yield loss is heightened following warm winters, which encourage rapid population growth and early flight. Estimates of the frequency and magnitude of warm winters are, therefore, helpful for understanding and managing this risk.

View Article and Find Full Text PDF
Article Synopsis
  • - Understanding carbon isotope discrimination (Δ C) in woody plants is essential for studying photosynthesis, but its variation over decades and relationships with gross primary production (GPP) are not fully understood.
  • - A new modeling capability in the land-surface model JULES was implemented to analyze Δ C, revealing that most models overestimate average Δ C and underestimate variability due to neglecting the impact of soil water stress.
  • - The study found that Δ C trends vary significantly by region from 1979 to 2016 but remain constant globally, and correlations between Δ C and GPP differ across environments, with negative correlations in wet-humid regions due to temperature effects.
View Article and Find Full Text PDF

Pests, pathogens and diseases cause some of the most widespread and damaging impacts worldwide - threatening lives and leading to severe disruption to economic, environmental and social systems. The overarching goal of biosecurity is to protect the health and security of plants and animals (including humans) and the wider environment from these threats. As nearly all living organisms and biological systems are sensitive to weather and climate, meteorological, 'met', data are used extensively in biosecurity.

View Article and Find Full Text PDF

Bemisia tabaci (the tobacco whitefly) is an important agricultural pest of global significance primarily because of its ability to transmit multiple damaging plant viruses. To date, UK outbreaks of the whitefly have been restricted to glasshouses and there are no records of the whitefly establishing outdoors during the summer. This is despite the fact that annual degree-day models (that estimate accumulated warmth over the year above the development threshold), indicate that B.

View Article and Find Full Text PDF

Exposure to pollen can contribute to increased hospital admissions for asthma exacerbation. This study applied an ecological time series analysis to examine associations between atmospheric concentrations of different pollen types and the risk of hospitalization for asthma in London from 2005 to 2011. The analysis examined short-term associations between daily pollen counts and hospital admissions in the presence of seasonal and long-term patterns, and allowed for time lags between exposure and admission.

View Article and Find Full Text PDF

Allergenic pollen is produced by the flowers of a number of trees, grasses and weeds found throughout the UK. Exposure to such pollen grains can exacerbate pollen-related asthma and allergenic conditions such as allergic rhinitis (hay fever). Maps showing the location of these allergenic taxa have many applications: they can be used to provide advice on risk assessments; combined with health data to inform research on health impacts such as respiratory hospital admissions; combined with weather data to improve pollen forecasting systems; or as inputs to pollen emission models.

View Article and Find Full Text PDF

Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity.

View Article and Find Full Text PDF

Arguably one of the most important effects of climate change is the potential impact on human health. While this is likely to take many forms, the implications for future transmission of vector-borne diseases (VBDs), given their ongoing contribution to global disease burden, are both extremely important and highly uncertain. In part, this is owing not only to data limitations and methodological challenges when integrating climate-driven VBD models and climate change projections, but also, perhaps most crucially, to the multitude of epidemiological, ecological and socio-economic factors that drive VBD transmission, and this complexity has generated considerable debate over the past 10-15 years.

View Article and Find Full Text PDF

The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure.

View Article and Find Full Text PDF

The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial.

View Article and Find Full Text PDF

In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which reduces transpiration and thus leaves more water at the land surface. This driver of change in the climate system, which we term 'physiological forcing', has been detected in observational records of increasing average continental runoff over the twentieth century.

View Article and Find Full Text PDF

Associations between delta13C values and leaf gas exchanges and tree-ring or needle growth, used in ecophysiological compositions, can be complex depending on the relative timing of CO2 uptake and subsequent redistribution and allocation of carbon to needle and stem components. For palaeoenvironmental and dendroecological studies it is often interpreted in terms of a simple model of delta13C fractionation in C3 plants. However, in spite of potential complicating factors, few studies have actually examined these relationships in mature trees over inter- and intra-annual time-scales.

View Article and Find Full Text PDF