Publications by authors named "Deborah G Mitchell"

-Hydroxycytidine (NHC) is an antiviral ribonucleoside analog that acts as a competitive alternative substrate for virally encoded RNA-dependent RNA polymerases. It exhibits measurable levels of cytotoxicity, with 50% cytotoxic concentration values ranging from 7.5 μM in CEM cells and up to >100 μM in other cell lines.

View Article and Find Full Text PDF

Influenza viruses constitute a major health threat and economic burden globally, frequently exacerbated by preexisting or rapidly emerging resistance to antiviral therapeutics. To address the unmet need of improved influenza therapy, we have created EIDD-2801, an isopropylester prodrug of the ribonucleoside analog -hydroxycytidine (NHC, EIDD-1931) that has shown broad anti-influenza virus activity in cultured cells and mice. Pharmacokinetic profiling demonstrated that EIDD-2801 was orally bioavailable in ferrets and nonhuman primates.

View Article and Find Full Text PDF

The New World alphaviruses Venezuelan, Eastern, and Western equine encephalitis viruses (VEEV, EEEV and WEEV, respectively) commonly cause a febrile disease that can progress to meningoencephalitis, resulting in significant morbidity and mortality. To address the need for a therapeutic agent for the treatment of Alphavirus infections, we identified and pursued preclinical characterization of a ribonucleoside analog EIDD-1931 (β-D-N-hydroxycytidine, NHC), which has shown broad activity against alphaviruses in vitro and has a very high genetic barrier for development of resistance. To be truly effective as a therapeutic agent for VEEV infection a drug must penetrate the blood brain barrier and arrest virus replication in the brain.

View Article and Find Full Text PDF

Morbidity and mortality resulting from influenza-like disease are a threat, especially for older adults. To improve case management, next-generation broad-spectrum antiviral therapeutics that are efficacious against major drivers of influenza-like disease, including influenza viruses and respiratory syncytial virus (RSV), are urgently needed. Using a dual-pathogen high-throughput screening protocol for influenza A virus (IAV) and RSV inhibitors, we have identified -hydroxycytidine (NHC) as a potent inhibitor of RSV, influenza B viruses, and IAVs of human, avian, and swine origins.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) represents a threat to infants, the elderly, and the immunocompromised. RSV entry blockers are in clinical trials, but escape mutations challenge their potential. In search of RSV inhibitors, we have integrated a signature resistance mutation into a recombinant RSV virus and applied the strain to high-throughput screening.

View Article and Find Full Text PDF

We demonstrate a superior method of 2D spectral-spatial imaging of stable radical reporter molecules at 250 MHz using rapid-scan electron-paramagnetic-resonance (RS-EPR), which can provide quantitative information under in vivo conditions on oxygen concentration, pH, redox status and concentration of signaling molecules (i.e., OH, NO).

View Article and Find Full Text PDF

Rapid-scan EPR signals for semiquinones with very-small well-resolved hyperfine splittings exhibit coherence signals at a time after passing through the EPR line that is proportional to the reciprocal of the hyperfine splitting. Such coherences are a general phenomenon due to constructive interference of the responses to transient excitation of spins by rapid scan of the magnetic field across equally spaced spin packets. Examples are shown for 2,3,5,6-tetramethoxy-1,4-benzosemiquinone with aH=46 mG for 12 protons and for 2,5-di-t-butyl-1,4-benzosemiquinone with aH=59 mG for 18 protons.

View Article and Find Full Text PDF

Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*).

View Article and Find Full Text PDF

Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz.

View Article and Find Full Text PDF

The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum.

View Article and Find Full Text PDF

Electron paramagnetic resonance spectroscopy is used to observe hydroxyl radicals produced by an atmospheric pressure nonthermal plasma device at distances greater than 1 m from the discharge. The plasma device is an indirect treatment setup with closed loop airflow and hydrogen peroxide additives that is effective in deactivating bacteria on time scales of seconds. The generation of the detected hydroxyl radicals is shown to occur in secondary chemical processes near the point of delivery of the plasma treated air stream.

View Article and Find Full Text PDF

We report a molecular design that provides an intravenously injectable organic radical contrast agent (ORCA) for which the molecular (1)H water relaxivity (r(1)) is ca. 5 mM(-1) s(-1). The ORCA is based on spirocyclohexyl nitroxide radicals and poly(ethylene glycol) chains conjugated to a fourth-generation polypropylenimine dendrimer scaffold.

View Article and Find Full Text PDF

The rapidly-changing magnetic field of sinusoidal rapid scans creates background signals that are dominated by oscillations at the scan frequency. The background oscillations can be removed without acquiring off-resonance data. For data acquired in quadrature, up-field and down-field scan signals can be separated in the frequency domain.

View Article and Find Full Text PDF

X-band rapid-scan EPR spectra were obtained for dilute aqueous solutions of nitroxyl radicals (15)N-mHCTPO (4-hydro-3-carbamoyl-2,2,5,5-tetra-perdeuteromethyl-pyrrolin-1-(15)N-oxyl-d(12)) and (15)N-PDT (4-oxo-2,2,6,6-tetra-perdeuteromethyl-piperidinyl-(15)N-oxyl-d(16)). Simulations of spectra for (15)N-mHCTPO and (15)N-PDT agreed well with the experimental spectra. As the scan rate is increased in the rapid scan regime, the region in which signal amplitude increases linearly with B(1) extends to higher power and the maximum signal amplitude increases.

View Article and Find Full Text PDF

The E' defect in irradiated fused quartz has spin lattice relaxation times (T(1)) about 100 to 300 μs and spin-spin relaxation times (T(2)) up to about 200 μs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (~9.

View Article and Find Full Text PDF

A general purpose pulsed microwave circuit was developed for the purpose of measuring resonator Q by the pulse ring-down method in EPR spectrometers without pulse capability. The circuit was installed and tested in a Bruker X-band EPR bridge. This method and circuit could be adapted for use in a variety of spectrometers operating at various microwave frequencies.

View Article and Find Full Text PDF

The electron spin-spin relaxation time (T(2)) for the 1:1 crystalline complex of α,γ-bisdiphenylene-β-phenylallyl (BDPA) with benzene was determined by continuous wave (CW) and rapid scan electron paramagnetic resonance (EPR). T(2) for individual BDPA particles found by simulation of rapid scan spectra or by simulation of the Lorentzian line shapes of CW spectra were in good agreement. The T(2) for small BDPA particles in air ranged from 80 to 160 ns, which corresponds to peak-to-peak Lorentzian linewidths of 0.

View Article and Find Full Text PDF

Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy.

View Article and Find Full Text PDF

Relaxation of highly vibrationally excited 1,2-, 1,3-, and 1,4-difluorobenzne (DFB) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot DFB (E' approximately 41,000 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Collisions between hot DFB isomers and CO2 result in large amounts of rotational and translational energy transfer from the hot donors to the bath.

View Article and Find Full Text PDF