Publications by authors named "Deborah Dickey"

Lipid enals are electrophilic products of lipid peroxidation that induce genotoxic and proteotoxic stress by covalent modification of DNA and proteins, respectively. As lipid enals accumulate to substantial amounts in visceral adipose during obesity and aging, we hypothesized that biogenic lipid enals may represent an endogenously generated, and therefore physiologically relevant, senescence inducers. To that end, we identified that 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal (4-HHE) or 4-oxo-2-nonenal (4-ONE) initiate the cellular senescence program of IMR90 fibroblasts and murine adipose stem cells.

View Article and Find Full Text PDF

Background: Aging is a complex biological process characterized by obesity and immunosenescence throughout the organism. Immunosenescence involves a decline in immune function and the increase in chronic-low grade inflammation, called inflammaging. Adipose tissue expansion, particularly that of visceral adipose tissue (VAT), is associated with an increase in pro-inflammatory macrophages that play an important role in modulating immune responses and producing inflammatory cytokines.

View Article and Find Full Text PDF
Article Synopsis
  • Guanylyl cyclase-A (GC-A) is an important target for drug development because it helps regulate cardiovascular and renal functions, and current research aims to create small molecular activators instead of relying solely on peptides.
  • This study utilized high-throughput screening and in silico design to discover small molecules that enhance the effects of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) on GC-A in various cellular experiments.
  • The findings revealed a new allosteric binding site on GC-A that small molecules can target selectively, paving the way for potential new cardiovascular therapies that improve the efficacy of ANP and BNP.
View Article and Find Full Text PDF

Obesity-linked diabetes is associated with accumulation of proinflammatory macrophages into adipose tissue leading to inflammasome activation and pyroptotic secretion of interleukin (IL)-1β and IL-18. Targeting fatty acid binding protein 4 (FABP4) uncouples obesity from inflammation, attenuates characteristics of type 2 diabetes and is mechanistically linked to the cellular accumulation of monounsaturated fatty acids in macrophages. Herein we show that pharmacologic inhibition or genetic deletion of FABP4 activates silent mating type information regulation 2 homolog 1 (SIRT1) and deacetylates its downstream targets p53 and signal transducer and activator of transcription 3 (STAT3).

View Article and Find Full Text PDF

Background: Obesity and diabetes are associated with an increased incidence of pancreatic cancer. Fatty acid binding protein 4 (FABP4), noted to be higher in patients with severe obesity, is linked to the development and progression of several cancers, and its level in the circulation decreases after bariatric surgery.

Objective: In this paper, we evaluate the role of FABP4 in pancreatic cancer progression.

View Article and Find Full Text PDF

Atrial natriuretic peptide (NP) and BNP increase cGMP, which reduces blood pressure and cardiac hypertrophy by activating guanylyl cyclase (GC)-A, also known as NPR-A or Npr1. Although GC-A is highly phosphorylated, and dephosphorylation inactivates the enzyme, the significance of GC-A phosphorylation to heart structure and function remains unknown. To identify in vivo processes that are regulated by GC-A phosphorylation, we substituted glutamates for known phosphorylation sites to make GC-A mice that express an enzyme that cannot be inactivated by dephosphorylation.

View Article and Find Full Text PDF

Resistance to chemotherapy can occur through a wide variety of mechanisms. Resistance to tyrosine kinase inhibitors (TKIs) often arises from kinase mutations-however, "off-target" resistance occurs but is poorly understood. Previously, we established cell line resistance models for three TKIs used in chronic myeloid leukemia treatment, and found that resistance was not attributed entirely to failure of kinase inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • cGMP signaling through the guanylyl cyclase Npr2 is critical for the proper bifurcation of sensory axons in neurons entering the spinal cord or hindbrain.
  • Researchers created a mutant mouse with a nonphosphorylatable form of Npr2 (Npr2-7A), which showed impaired axon bifurcation, indicating the importance of phosphorylation for this process.
  • In contrast, a different mutant which mimicked constant phosphorylation (Npr2-7E) exhibited normal axon branching and also demonstrated related effects on growth and development, suggesting that Npr2 phosphorylation is crucial for both axon formation and bone growth.
View Article and Find Full Text PDF

Activating mutations in the receptor for C-type natriuretic peptide (CNP), guanylyl cyclase B (GC-B, also known as Npr2 or NPR-B), increase cellular cGMP and cause skeletal overgrowth, but how these mutations affect GTP catalysis is poorly understood. The A488P and R655C mutations were compared with the known mutation V883M. Neither mutation affected GC-B concentrations.

View Article and Find Full Text PDF

Multisite phosphorylation is required for activation of guanylyl cyclase (GC)-A, also known as NPR-A or NPR1, by cardiac natriuretic peptides (NPs). Seven chemically identified sites (Ser-487, Ser-497, Thr-500, Ser-502, Ser-506, Ser-510, and Thr-513) and one functionally identified putative site (Ser-473) were reported. Single alanine substitutions for Ser-497, Thr-500, Ser-502, Ser-506, and Ser-510 reduced maximal velocity (), whereas glutamate substitutions had no effect or increased Ala but not Glu substitution for Ser-497 increased the Michaelis constant () approximately 400%.

View Article and Find Full Text PDF

C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface.

View Article and Find Full Text PDF

The meiotic cell cycle of mammalian oocytes starts during embryogenesis and then pauses until luteinizing hormone (LH) acts on the granulosa cells of the follicle surrounding the oocyte to restart the cell cycle. An essential event in this process is a decrease in cyclic GMP in the granulosa cells, and part of the cGMP decrease results from dephosphorylation and inactivation of the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase, also known as guanylyl cyclase B. However, it is unknown whether NPR2 dephosphorylation is essential for LH-induced meiotic resumption.

View Article and Find Full Text PDF

C-type natriuretic peptide (CNP) increases long bone growth by stimulating guanylyl cyclase (GC)-B/NPR-B/NPR2. Recently, a Val to Met missense mutation at position 883 in the catalytic domain of GC-B was identified in humans with increased blood cGMP levels that cause abnormally long bones. Here, we determined how this mutation activates GC-B.

View Article and Find Full Text PDF

Kinase homology domain (KHD) phosphorylation is required for activation of guanylyl cyclase (GC)-A and -B. Phosphopeptide mapping identified multiple phosphorylation sites in GC-A and GC-B, but these approaches have difficulty identifying sites in poorly detected peptides. Here, a functional screen was conducted to identify novel sites.

View Article and Find Full Text PDF

Cardiomyocytes release atrial natriuretic peptide (ANP) and B-type natriuretic peptide to stimulate processes that compensate for the failing heart by activating guanylyl cyclase (GC)-A. C-type natriuretic peptide is also elevated in the failing heart and inhibits cardiac remodeling by activating the homologous receptor, GC-B. We previously reported that GC-A is the most active membrane GC in normal mouse ventricles while GC-B is the most active membrane GC in failing ventricles due to increased GC-B and decreased GC-A activities.

View Article and Find Full Text PDF

Background: B-type natriuretic peptide (BNP) compensates for the failing heart and is synthesized as a 108-residue prohormone that is cleaved to a 32-residue C-terminal maximally active peptide. During heart failure, serum concentrations of proBNP(1-108) exceed concentrations of BNP(1-32). The aim of this study was to determine why the proBNP(1-108)/BNP(1-32) ratio increases and whether proBNP(1-108) is bioactive.

View Article and Find Full Text PDF

Atrial natriuretic peptide (ANP) binds guanylyl cyclase-A (GC-A) and natriuretic peptide receptor-C (NPR-C). Internalization of GC-A and NPR-C is poorly understood, in part, because previous studies used (125)I-ANP binding to track these receptors, which are expressed in the same cell. Here, we evaluated GC-A and NPR-C internalization using traditional and novel approaches.

View Article and Find Full Text PDF

Designer natriuretic peptides (NPs) represent an active area of drug development. In canine and human studies, the designer natriuretic peptide CD-NP demonstrated more desirable therapeutic potential than recombinant B-type NP (BNP), which is known as nesiritide and is approved for treatment of acute decompensated heart failure. However, why CD-NP is more effective than BNP is not known.

View Article and Find Full Text PDF

Natriuretic peptides (NPs) are cyclic vasoactive peptide hormones with high therapeutic potential. Three distinct NPs (ANP, BNP, and CNP) can selectively activate natriuretic peptide receptors, NPR-A and NPR-B, raising the cyclic GMP (cGMP) levels. Insulin-degrading enzyme (IDE) was found to rapidly cleave ANP, but the functional consequences of such cleavages in the cellular environment and the molecular mechanism of recognition and cleavage remain unknown.

View Article and Find Full Text PDF

B-type natriuretic peptide (BNP) combats cardiac stress by reducing blood pressure and ventricular fibrosis. Human BNP is inactivated by unknown cell surface proteases. N-terminal cleavage of mouse BNP by the renal protease meprin A was reported to increase inactivating degradation by a second protease named neprilysin.

View Article and Find Full Text PDF

B-type natriuretic peptide (BNP) decreases cardiac preload and hypertrophy. As such, synthetic BNP, nesiritide, was approved for the treatment of acutely decompensated heart failure. However, two problems limit its therapeutic potential.

View Article and Find Full Text PDF

Alternative RNA splicing may provide unique opportunities to identify drug targets and therapeutics. We identified an alternative spliced transcript for B-type natriuretic peptide (BNP) resulting from intronic retention. This transcript is present in failing human hearts and is reduced following mechanical unloading.

View Article and Find Full Text PDF

A heterozygous frameshift mutation causing a 12-amino acid extension to the C terminus of atrial natriuretic peptide (ANP) was recently genetically linked to patients with familial atrial fibrillation (Hodgson-Zingman, D. M., Karst, M.

View Article and Find Full Text PDF

Natriuretic peptides are a family of three structurally related hormone/ paracrine factors. Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are secreted from the cardiac atria and ventricles, respectively. ANP signals in an endocrine and paracrine manner to decrease blood pressure and cardiac hypertrophy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: