Publications by authors named "Deborah C W Klooster"

Repetitive transcranial magnetic stimulation (rTMS) is an effective and evidence-based therapy for treatment-resistant major depressive disorder. A conventional course of rTMS applies 20-30 daily sessions over 4-6 weeks. The schedule of rTMS delivery can be accelerated by applying multiple stimulation sessions per day, which reduces the duration of a treatment course with a predefined number of sessions.

View Article and Find Full Text PDF

Repetitive transcranial magnetic stimulation (rTMS) is a tool that can be used to administer treatment for neuropsychiatric disorders such as major depressive disorder, although the clinical efficacy is still rather modest. Overly general stimulation protocols that consider neither patient-specific depression symptomology nor individualized brain characteristics, such as anatomy or structural and functional connections, may be the cause of the high inter- and intraindividual variability in rTMS clinical responses. Multimodal neuroimaging can provide the necessary insights into individual brain characteristics and can therefore be used to personalize rTMS parameters.

View Article and Find Full Text PDF

In recent years there has been an explosion of research evaluating resting-state brain functional connectivity (FC) using different modalities. However, the relationship between such measures of FC and the underlying causal brain interactions has not been well characterized. To further characterize this relationship, we assessed the relationship between electroencephalography (EEG) resting state FC and propagation of transcranial magnetic stimulation (TMS) evoked potentials (TEPs) at the sensor and source level in healthy participants.

View Article and Find Full Text PDF

Background: Repetitive transcranial magnetic stimulation (rTMS) is an established treatment for major depressive disorder (MDD), but its clinical efficacy remains rather modest. One reason for this could be that the propagation of rTMS effects via structural connections from the stimulated area to deeper brain structures (such as the cingulate cortices) is suboptimal.

Methods: We investigated whether structural connectivity — derived from diffusion MRI data — could serve as a biomarker to predict treatment response.

View Article and Find Full Text PDF

Graph analysis was used to study the effects of accelerated intermittent theta burst stimulation (aiTBS) on the brain's network topology in medication-resistant depressed patients. Anatomical and resting-state functional MRI (rs-fMRI) was recorded at baseline and after sham and verum stimulation. Depression severity was assessed using the Hamilton Depression Rating Scale (HDRS).

View Article and Find Full Text PDF