Publications by authors named "Deborah Barkauskas"

Pancreatic ductal adenocarcinoma (PDAC) is characterized by increasing fibrosis, which can enhance tumor progression and spread. Here, we undertook an unbiased temporal assessment of the matrisome of the highly metastatic KPC (, , ) and poorly metastatic KPC (, , ) genetically engineered mouse models of pancreatic cancer using mass spectrometry proteomics. Our assessment at early-, mid-, and late-stage disease reveals an increased abundance of nidogen-2 (NID2) in the KPC model compared to KPC, with further validation showing that NID2 is primarily expressed by cancer-associated fibroblasts (CAFs).

View Article and Find Full Text PDF

Medulloblastoma is the most common malignant pediatric brain tumor and there is an urgent need for molecularly targeted and subgroup-specific therapies. The stem cell factor SOX9, has been proposed as a potential therapeutic target for the treatment of Sonic Hedgehog medulloblastoma (SHH-MB) subgroup tumors, given its role as a downstream target of Hedgehog signaling and in functionally promoting SHH-MB metastasis and treatment resistance. However, the functional requirement for SOX9 in the genesis of medulloblastoma remains to be determined.

View Article and Find Full Text PDF

Multiphoton fluorescence lifetime microscopy has revolutionized studies of pathophysiological and xenobiotic dynamics, enabling the spatial and temporal quantification of these processes in intact organs in vivo. We have previously used multiphoton fluorescence lifetime microscopy to characterise the morphology and amplitude weighted mean fluorescence lifetime of the endogenous fluorescent metabolic cofactor nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) of mouse livers in vivo following induction of various disease states. Here, we extend the characterisation of liver disease models by using nonlinear regression to estimate the unbound, bound fluorescence lifetimes for NAD(P)H, flavin adenine dinucleotide (FAD), along with metabolic ratios and examine the impact of using multiple segmentation methods.

View Article and Find Full Text PDF

We describe the contribution of our multiphoton microscopy (MPM) studies over the last ten years with DermaInspect (JenLab, Germany), a CE-certified medical tomograph based on detection of fluorescent biomolecules, to the assessment of possible penetration of nanoparticulate zinc oxide in sunscreen through human skin. At the time we started our work, there was a strong movement for the precautionary principle to be applied to the use of nanoparticles in consumer products due to a lack of knowledge. The combined application of different MPM modalities, including spectral imaging, fluorescence lifetime imaging, second harmonic fluorescence generation, and phosphorescence microscopy, has provided overwhelming evidence that nanoparticle zinc oxide particles do not penetrate human skin when applied to various skin types with a range of methods of topical sunscreen application.

View Article and Find Full Text PDF

Intravital imaging of the immune system is a powerful technique for studying biology of the immune response in the spinal cord using a variety of disease models ranging from traumatic injury to autoimmune disorders. Here, we will discuss specific technical aspects as well as many intriguing biological phenomena that have been revealed with the use of intravital imaging for investigation of the immune system in the spinal cord. We will discuss surgical techniques for exposing and stabilizing the spine that are critical for obtaining images, visualizing immune and CNS cells with genetically expressed fluorescent proteins, fluorescent labeling techniques and briefly discuss some of the challenges of image analysis.

View Article and Find Full Text PDF

Immunotherapy holds promise for multiple myeloma (MM) patients but little is known about how MM-induced immunosuppression influences response to therapy. Here, we investigated the impact of disease progression on immunotherapy efficacy in the Vk*MYC mouse model. Treatment with agonistic anti-CD137 (4-1BB) mAbs efficiently protected mice when administered early but failed to contain MM growth when delayed more than three weeks after Vk*MYC tumor cell challenge.

View Article and Find Full Text PDF

Critical immune-suppressive pathways beyond programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) require greater attention. Nectins and nectin-like molecules might be promising targets for immunotherapy, since they play critical roles in cell proliferation and migration and exert immunomodulatory functions in pathophysiological conditions. Here, we show CD155 expression in both malignant cells and tumor-infiltrating myeloid cells in humans and mice.

View Article and Find Full Text PDF

Inflammatory chemokines are critical contributors in attracting relevant immune cells to the tumor microenvironment and driving cellular interactions and molecular signaling cascades that dictate the ultimate outcome of host anti-tumor immune response. Therefore, rational application of chemokines in a spatial-temporal dependent manner may constitute an attractive adjuvant in immunotherapeutic approaches against cancer. Existing data suggest that the macrophage inflammatory protein (MIP)-1 family and related proteins, consisting of CCL3 (MIP-1α), CCL4 (MIP-1β), and CCL5 (RANTES), can be major determinant of immune cellular infiltration in certain tumors through their direct recruitment of antigen presenting cells, including dendritic cells (DCs) to the tumor site.

View Article and Find Full Text PDF

Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment.

View Article and Find Full Text PDF

Increasing evidence exists for the role of immunosuppressive adenosine in promoting tumor growth and spread in a number of cancer types, resulting in poor clinical outcomes. In this study, we assessed whether the CD73-adenosinergic pathway is active in melanoma patients and whether adenosine restricts the efficacy of clinically approved targeted therapies for commonly mutated BRAF melanoma. In AJCC stage III melanoma patients, CD73 expression (the enzyme that generates adenosine) correlated significantly with patients presenting nodal metastatic melanoma, suggesting that targeting this pathway may be effective in advanced stage disease.

View Article and Find Full Text PDF

The emerging role for CD73 in driving cancer growth and metastasis has presented opportunities to develop anti-CD73 monoclonal antibodies (mAbs) in the treatment of human cancers. Blockade of CD73 by antagonistic CD73 mAbs ameliorates tumor growth and metastasis via the inhibition of enzymatic and non-enzymatic CD73 pathways. In this study, we investigated whether Fc-receptor cross-linking represented a non-redundant mechanism by which anti-CD73 mAbs exert potent suppression of solid tumors and metastases.

View Article and Find Full Text PDF

Novel partners for established immune checkpoint inhibitors in the treatment of cancer are needed to address the problems of primary and acquired resistance. The efficacy of combination RANKL and CTLA4 blockade in antitumor immunity has been suggested by recent case reports in melanoma. Here, we provide a rationale for this combination in mouse models of cancer.

View Article and Find Full Text PDF

NK cells are highly efficient at preventing cancer metastasis but are infrequently found in the core of primary tumors. Here, have we demonstrated that freshly isolated mouse and human NK cells express low levels of the endo-β-D-glucuronidase heparanase that increase upon NK cell activation. Heparanase deficiency did not affect development, differentiation, or tissue localization of NK cells under steady-state conditions.

View Article and Find Full Text PDF

Preclinical studies targeting the adenosinergic pathway have gained much attention for their clinical potential in overcoming tumor-induced immunosuppression. Here, we have identified that co-blockade of the ectonucleotidase that generates adenosine CD73 and the A2A adenosine receptor (A2AR) that mediates adenosine signaling in leuokocytes, by using compound gene-targeted mice or therapeutics that target these molecules, limits tumor initiation, growth, and metastasis. This tumor control requires effector lymphocytes and interferon-γ, while antibodies targeting CD73 promote an optimal therapeutic response in vivo when engaging activating Fc receptors.

View Article and Find Full Text PDF

Cancers often evade immune surveillance by adopting peripheral tissue- tolerance mechanisms, such as the expression of programmed cell death ligand 1 (PD-L1), the inhibition of which results in potent antitumor immunity. Here, we show that cyclin-dependent kinase 5 (Cdk5), a serine-threonine kinase that is highly active in postmitotic neurons and in many cancers, allows medulloblastoma (MB) to evade immune elimination. Interferon-γ (IFN-γ)-induced PD-L1 up-regulation on MB requires Cdk5, and disruption of Cdk5 expression in a mouse model of MB results in potent CD4(+) T cell-mediated tumor rejection.

View Article and Find Full Text PDF

Adenosine plays an important role in inflammation and tumor development, progression, and responses to therapy. We show that an adenosine 2B receptor inhibitor (A2BRi) decreases both experimental and spontaneous metastasis and combines with chemotherapy or immune checkpoint inhibitors in mouse models of melanoma and triple-negative breast cancer (TNBC) metastasis. Decreased metastasis upon A2BR inhibition is independent of host A2BR and lymphocytes and myeloid cells.

View Article and Find Full Text PDF

The presence of colony stimulating factor-1 (CSF1)/CSF1 receptor (CSF1R)-driven tumor-infiltrating macrophages and myeloid-derived suppressor cells (MDSCs) is shown to promote targeted therapy resistance. In this study, we demonstrate the superior effect of a combination of CSF1R inhibitor, PLX3397 and BRAF inhibitor, PLX4720, in suppressing primary and metastatic mouse BRAF melanoma. Using flow cytometry to assess SM1WT1 melanoma-infiltrating leukocytes immediately post therapy, we found that PLX3397 reduced the recruitment of CD11b Gr1 and CD11b Gr1 M2-like macrophages, but this was accompanied by an accumulation of CD11b Gr1 cells.

View Article and Find Full Text PDF

In inflamed lymph nodes, Ag-specific CD4(+) and CD8(+) T cells encounter Ag-bearing dendritic cells and, together, this complex enhances the release of CCL3 and CCL4, which facilitate additional interaction with naive CD8(+) T cells. Although blocking CCL3 and CCL4 has no effect on primary CD8(+) T cell responses, it dramatically impairs the development of memory CD8(+) T cells upon Ag rechallenge. Despite the absence of detectable surface CCR5 expression on circulating native CD8(+) T cells, these data imply that naive CD8(+) T cells are capable of expressing surface CCR5 prior to cognate Ag-induced TCR signaling in inflamed lymph nodes; however, the molecular mechanisms have not been characterized to date.

View Article and Find Full Text PDF

Peripheral immune cells are critical to the pathogenesis of neurodegenerative diseases including multiple sclerosis (MS) (Hendriks et al., 2005; Kasper and Shoemaker, 2010). However, the precise sequence of tissue events during the early asymptomatic induction phase of experimental autoimmune encephalomyelitis (EAE) pathogenesis remains poorly defined.

View Article and Find Full Text PDF

Fluorescent imaging coupled with high-resolution femto-second pulsed infrared lasers allows for interrogation of cellular interactions deeper in living tissues than ever imagined. Intra-vital imaging of the central nervous system (CNS) has provided insights into neuronal development, synaptic transmission, and even immune interactions. In this review we will discuss the two most common intravital approaches for studying the cerebral cortex in the live mouse brain for pre-clinical studies, the thinned skull and cranial window techniques, and focus on the advantages and drawbacks of each approach.

View Article and Find Full Text PDF

Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column.

View Article and Find Full Text PDF

Resident microglia and blood-borne macrophages have both been implicated to play a dominant role in mediating the neuroinflammatory response affecting implanted intracortical microelectrodes. However, the distinction between each cell type has not been demonstrated due to a lack of discriminating cellular markers. Understanding the subtle differences of each cell population in mediating neuroinflammation can aid in determining the appropriate therapeutic approaches to improve microelectrode performance.

View Article and Find Full Text PDF

After traumatic spinal cord injury, functional deficits increase as axons die back from the center of the lesion and the glial scar forms. Axonal dieback occurs in two phases: an initial axon intrinsic stage that occurs over the first several hours and a secondary phase which takes place over the first few weeks after injury. Here, we examine the secondary phase, which is marked by infiltration of macrophages.

View Article and Find Full Text PDF