The continued emergence of SARS-CoV-2 variants and the threat of future Sarbecovirus zoonoses have spurred the design of vaccines that can induce broad immunity against multiple coronaviruses. Here, we use computational methods to infer ancestral phylogenetic reconstructions of receptor binding domain (RBD) sequences across multiple Sarbecovirus clades and incorporate them into a multivalent adenoviral-vectored vaccine. Mice immunized with this pan-Sarbecovirus vaccine are protected in the upper and lower respiratory tracts against infection by historical and contemporary SARS-CoV-2 variants, SARS-CoV, and pre-emergent SHC014 and Pangolin/GD coronavirus strains.
View Article and Find Full Text PDFHuman bocaparvoviruses (HBoVs) belong to the Parvoviridae family, being currently classified into four species (HBoV1-4). These viruses have been found in association with respiratory and gastroenteric symptoms, as well as in asymptomatic individuals. This study aimed to investigate the occurrence of HBoVs in infants under 5 months old admitted to a Neonatal Intensive Care Unit (NICU) during the COVID-19 pandemic (between March 2021 and March 2022).
View Article and Find Full Text PDFIntroduction: Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces rapid production of IgM, IgA, and IgG antibodies directed to multiple viral antigens that may have impact diverse clinical outcomes.
Methods: We evaluated IgM, IgA, and IgG antibodies directed to the nucleocapsid (NP), IgA and IgG to the Spike protein and to the receptor-binding domain (RBD), and the presence of neutralizing antibodies (nAb), in a cohort of unvaccinated SARS-CoV-2 infected individuals, in the first 30 days of post-symptom onset (PSO) (T1).
Results: This study included 193 coronavirus disease 2019 (COVID-19) participants classified as mild, moderate, severe, critical, and fatal and 27 uninfected controls.
Immune responses after COVID-19 vaccination should be evaluated in different populations around the world. This study compared antibody responses induced by ChAdOx1 nCoV-19, CoronaVac, and BNT162b2 vaccines. Blood samples from vaccinees were collected pre- and post-vaccinations with the second and third doses.
View Article and Find Full Text PDFSevere manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined.
View Article and Find Full Text PDFBackground: COVID-19 pandemic continues to be a priority in public health worldwide, and factors inherent to SARS-CoV-2 pathogenesis and genomic characteristics are under study. Investigations that evaluate possible risk factors for infection, clinical manifestations, and viral shedding in different specimens also need to clarify possible associations with COVID-19 prognosis and disease outcomes.
Study Design: In this study, we evaluated SARS-CoV-2 positivity and estimated viral loads by real-time RT-PCR in stool, sera, and urine samples from 35 patients, with a positive SARS-CoV-2 RNA molecular test in respiratory sample, attended at a University COVID-19 referral hospital in Goiania, Goias, Brazil.
The current SARS-CoV-2 pandemic has imposed new challenges and demands for health systems, especially in the development of new vaccine strategies. Vaccines for many pathogens were developed based on the display of foreign epitopes in the variable regions of the human adenovirus (HAdV) major capsid proteins (hexon, penton and fiber). The humoral immune response against the HAdV major capsid proteins was demonstrated to play a role in the development of an immune response against the epitopes in display.
View Article and Find Full Text PDF