Publications by authors named "Deborah A VAN DER List"

Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2-/- mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Increasing nitric oxide (NO) production dampens visual responses in retinal ganglion cells, as previously demonstrated.
  • Experiments with nNOS gene knockout mice reveal that these animals have reduced sensitivity to light, requiring higher light intensities for optimal responses compared to normal mice.
  • Overall, the findings indicate that NO levels in the retina play a critical role in modulating visual information sent to the brain, with higher NO reducing sensitivity and lack of nNOS diminishing response to light.
View Article and Find Full Text PDF

The aging nervous system is known to manifest a variety of degenerative and regressive events. Here we report the unexpected growth of dendrites in the retinas of normal old mice. The dendrites of many rod bipolar cells in aging mice were observed to extend well beyond their normal strata within the outer plexiform layer to innervate the outer nuclear layer where they appeared to form contacts with the spherules of rod photoreceptors.

View Article and Find Full Text PDF

We compared the developmental periods in the mouse when projections from the two eyes become segregated in the dorsal lateral geniculate nucleus with the time when this nucleus becomes innervated by cholinergic fibers from the brainstem. Changes in labeling patterns of different tracers injected into each eye revealed that segregation of retinogeniculate inputs commences at postnatal day five (P5) and is largely complete by P8. Immunocytochemical staining showed that cholinergic neurons are present in the parabrachial region of the brain stem on the day of birth.

View Article and Find Full Text PDF