Publications by authors named "Deborah A Martin"

Mining and wildfires are both landscape disturbances that pose elevated and substantial hazards to water supplies and ecosystems due to increased erosion and transport of sediment, metals, and debris to downstream waters. The risk to water supplies may be amplified when these disturbances occur in the same watershed. This work describes mechanisms by which the intersection of mining and wildfire may lead to elevated metal concentrations in downstream waters: (1) conveyance of metal-rich ash and soil to surface waters, (2) increased dissolution and transport of dissolved metals due to direct contact of precipitation with mine waste, (3) increased erosion and transport of metal-rich sediment from mining waste, (4) remobilization of previously deposited metal-contaminated floodplain sediment by higher postfire flood flows, and (5) increased metal transport from underground mine workings.

View Article and Find Full Text PDF

Burn severity influences on post-fire recovery of soil-hydraulic properties controlling runoff generation are poorly understood despite the importance for parameterizing infiltration models. We measured soil-hydraulic properties of field-saturated hydraulic conductivity (K), sorptivity (S), and wetting front potential (ψ) for four years after the 2013 Black Forest Fire, Colorado, USA, at six sites across a gradient of initial remotely sensed burn severity using the change in the normalized burn ratio (dNBR). These measurements were correlated with soil-physical property measurements of bulk density (ρ), loss on ignition (LOI, a measure of soil organic matter), and ground cover composition to provide insight into causal factors for temporal changes in K, S, and ψ.

View Article and Find Full Text PDF

Wildfires burning in watersheds that have been mined and since revegetated pose unique risks to downstream water supplies. A wildfire near Boulder, Colorado, that burned a forested watershed recovering from mining disturbance that occurred 80-160 years ago allowed us to 1) assess arsenic and metal contamination in streams draining the burned area for a five-year period after the wildfire and 2) determine the fire-affected hydrologic drivers that convey arsenic and metals to surface water. Most metal concentrations were low in the circumneutral waters draining the burned area.

View Article and Find Full Text PDF

Fire is a ubiquitous natural disturbance that affects 3-4% of the Earth's surface each year. It is a tool used by humans for land clearing and burning of agricultural wastes. The United Nations Sustainable Development Goals (SDGs) do not explicitly mention fire, though many of the Goals are affected by the beneficial and adverse consequences of fires on ecosystem services.

View Article and Find Full Text PDF
At the nexus of fire, water and society.

Philos Trans R Soc Lond B Biol Sci

June 2016

The societal risks of water scarcity and water-quality impairment have received considerable attention, evidenced by recent analyses of these topics by the 2030 Water Resources Group, the United Nations and the World Economic Forum. What are the effects of fire on the predicted water scarcity and declines in water quality? Drinking water supplies for humans, the emphasis of this exploration, are derived from several land cover types, including forests, grasslands and peatlands, which are vulnerable to fire. In the last two decades, fires have affected the water supply catchments of Denver (CO) and other southwestern US cities, and four major Australian cities including Sydney, Canberra, Adelaide and Melbourne.

View Article and Find Full Text PDF

Necrotizing fasciitis is a potentially lethal invasive soft tissue infection. Early aggressive antibiotic therapy and surgical debridement have been the hallmark of successful therapy. It is commonly held that delays in surgical debridement significantly increase the mortality rate and rate of limb loss.

View Article and Find Full Text PDF