Publications by authors named "Deboraci B Prates"

infection causes skin ulcers, typically found in localized cutaneous leishmaniasis (LCL). This tissue pathology associates with different modalities of cell necrosis, which are subverted by the parasite as a survival strategy. Herein we examined the participation of necroptosis, a specific form of programmed necrosis, in LCL lesions and found reduced RIPK3 and PGAM5 gene expression compared to normal skin.

View Article and Find Full Text PDF

Necroptosis is a pro-inflammatory cell death, which happens in the context of caspase-8 inhibition, allowing activation of the receptor interacting protein kinase 1-receptor interacting protein kinase 3-mixed lineage kinase domain-like (RIPK1-RIPK3-MLKL) axis. Recently, necroptosis has emerged as a key component of resistance against pathogens including infected macrophage by , the ethiologic agent of Visceral leishmaniasis (VL). VL is the most severe form of Leishmaniasis, characterized by systemic inflammation and neutropenia.

View Article and Find Full Text PDF

During bloodfeeding, the presence of sand fly saliva in the hemorrhagic pool where is also inoculated modulates the development of host immune mechanisms creating a favorable environment for disease progression. To date, information obtained through experimental models suggests that sand fly saliva induces cellular recruitment and modulates production of eicosanoids. However, the effect of sand fly saliva in the different steps of the inflammatory response triggered by remains undefined.

View Article and Find Full Text PDF

Free heme is an inflammatory molecule capable of inducing migration and activation of neutrophils. Here, we examine the heme-driven oxidative stress-associated cell death mechanisms in human neutrophils infected with , an etiologic agent of visceral leishmaniasis (VL). We first performed exploratory analyses in a population of well characterized treatment-naïve VL patients as well as uninfected controls, who were part of previously reported studies.

View Article and Find Full Text PDF

Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production.

View Article and Find Full Text PDF

Background: Neutrophils are the first line of defense against invading pathogens and are rapidly recruited to the sites of Leishmania inoculation. During Leishmania braziliensis infection, depletion of inflammatory cells significantly increases the parasite load whereas co-inoculation of neutrophils plus L. braziliensis had an opposite effect.

View Article and Find Full Text PDF

Background: Eicosanoids and sand fly saliva have a critical role in the Leishmania infection. Here, we evaluated the effect of Lutzomyia longipalpis salivary gland sonicate (SGS) on neutrophil and monocyte recruitment and activation of eicosanoid production in a murine model of inflammation.

Methods: C57BL/6 mice were inoculated intraperitonealy with Lutzomyia longipalpis SGS or Leishmania infantum or both, followed by analyses of cell recruitment, parasite load and eicosanoid production.

View Article and Find Full Text PDF

Leishmania infantum chagasi causes visceral leishmaniasis (VL); it is transmitted by the sand fly Lutzomyia longipalpis that injects saliva and parasites into the host's skin during a blood meal. Chickens represent an important blood source for sand flies and their presence in the endemic area is often cited as a risk factor for VL transmission. However, the role of chickens in VL epidemiology has not been well defined.

View Article and Find Full Text PDF

Unlabelled: We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load.

View Article and Find Full Text PDF

When an haematophagous sand fly vector insect bites a vertebrate host, it introduces its mouthparts into the skin and lacerates blood vessels, forming a hemorrhagic pool which constitutes an intricate environment of cell interactions. In this scenario, the initial performance of host, parasite, and vector "authors" will heavily influence the course of Leishmania infection. Recent advances in vector-parasite-host interaction have elucidated "co-authors" and "new roles" not yet described.

View Article and Find Full Text PDF

Neutrophils are considered the host's first line of defense against infections and have been implicated in the immunopathogenesis of Leishmaniasis. Leishmania parasites are inoculated alongside vectors' saliva, which is a rich source of pharmacologically active substances that interfere with host immune response. In the present study, we tested the hypothesis that salivary components from Lutzomyia longipalpis, an important vector of visceral Leishmaniasis, enhance neutrophil apoptosis.

View Article and Find Full Text PDF

Background: Sand fly saliva contains molecules that modify the host's hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets) and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli.

View Article and Find Full Text PDF

Mimicking mammalian apoptotic cells by exposing phosphatidylserine (PS) is a strategy used by virus and parasitic protozoa to escape host protective inflammatory responses. With Leishmania amazonensis (La), apoptotic mimicry is a prerogative of the intramacrophagic amastigote form of the parasite and is modulated by the host. Now we show that differently from what happens with amastigotes, promastigotes exposing PS are non-viable, non-infective cells, undergoing apoptotic death.

View Article and Find Full Text PDF

Lutzomyia (Nyssomyia) intermedia (Lutz & Neiva 1912) and Lutzomyia (Nyssomyia) whitmani (Antunes & Coutinho 1939) (Diptera: Psychodidae) are vectors of American cutaneous leishmaniasis in several endemic regions of Brazil. We analyzed the external morphological aspects of the immature stages of these two vectors by using scanning electron microscopy. In general, the larval stages of the two species are morphologically similar, although some differences were noted.

View Article and Find Full Text PDF