Publications by authors named "Debora de Chiusole"

Indexes for estimating the overall reliability of a test in the framework of knowledge space theory (KST) are proposed and analyzed. First, the possibility of applying in KST the existing classical test theory (CTT) methods, based on the ratio between the true score variance and the total variance of the measure, has been explored. However, these methods are not suitable because in KST error and true score are not independent.

View Article and Find Full Text PDF

Assessing executive functions in individuals with disorders or clinical conditions can be challenging, as they may lack the abilities needed for conventional test formats. The use of more personalized test versions, such as adaptive assessments, might be helpful in evaluating individuals with specific needs. This paper introduces PsycAssist, a web-based artificial intelligence system designed for neuropsychological adaptive assessment and training.

View Article and Find Full Text PDF

Procedural knowledge space theory (PKST) was recently proposed by Stefanutti (British Journal of Mathematical and Statistical Psychology, 72(2) 185-218, 2019) for the assessment of human problem-solving skills. In PKST, the problem space formally represents how a family of problems can be solved and the knowledge space represents the skills required for solving those problems. The Markov solution process model (MSPM) by Stefanutti et al.

View Article and Find Full Text PDF

A probabilistic framework for the polytomous extension of knowledge space theory (KST) is proposed. It consists in a probabilistic model, called polytomous local independence model, that is developed as a generalization of the basic local independence model. The algorithms for computing "maximum likelihood" (ML) and "minimum discrepancy" (MD) estimates of the model parameters have been derived and tested in a simulation study.

View Article and Find Full Text PDF

In practical applications of knowledge space theory, knowledge states can be conceived as partially ordered clusters of individuals. Existing extensions of the theory to polytomous data lack methods for building "polytomous" structures. To this aim, an adaptation of the k-median clustering algorithm is proposed.

View Article and Find Full Text PDF

If the automatic item generation is used for generating test items, the question of how the equivalence among different instances may be tested is fundamental to assure an accurate assessment. In the present research, the question was dealt by using the knowledge space theory framework. Two different ways of considering the equivalence among instances are proposed: The former is at a deterministic level and it requires that all the instances of an item template must belong to exactly the same knowledge states; the latter adds a probabilistic level to the deterministic one.

View Article and Find Full Text PDF

The gain-loss model (GaLoM) is a formal model for assessing knowledge and learning. In its original formulation, the GaLoM assumes independence among the skills. Such an assumption is not reasonable in several domains, in which some preliminary knowledge is the foundation for other knowledge.

View Article and Find Full Text PDF

One of the most crucial issues in knowledge space theory is the construction of the so-called knowledge structures. In the present paper, a new data-driven procedure for large data sets is described, which overcomes some of the drawbacks of the already existing methods. The procedure, called k-states, is an incremental extension of the k-modes algorithm, which generates a sequence of locally optimal knowledge structures of increasing size, among which a "best" model is selected.

View Article and Find Full Text PDF

In knowledge space theory, existing adaptive assessment procedures can only be applied when suitable estimates of their parameters are available. In this paper, an iterative procedure is proposed, which upgrades its parameters with the increasing number of assessments. The first assessments are run using parameter values that favor accuracy over efficiency.

View Article and Find Full Text PDF

Missing data are a well known issue in statistical inference, because some responses may be missing, even when data are collected carefully. The problem that arises in these cases is how to deal with missing data. In this article, the missingness is analyzed in knowledge space theory, and in particular when the basic local independence model (BLIM) is applied to the data.

View Article and Find Full Text PDF

The basic local independence model (BLIM) is a probabilistic model for knowledge structures, characterized by the property that lucky guess and careless error parameters of the items are independent of the knowledge states of the subjects. When fitting the BLIM to empirical data, a good fit can be obtained even when the invariance assumption is violated. Therefore, statistical tests are needed for detecting violations of this specific assumption.

View Article and Find Full Text PDF

In knowledge space theory, the knowledge state of a student is the set of all problems he is capable of solving in a specific knowledge domain and a knowledge structure is the collection of knowledge states. The basic local independence model (BLIM) is a probabilistic model for knowledge structures. The BLIM assumes a probability distribution on the knowledge states and a lucky guess and a careless error probability for each problem.

View Article and Find Full Text PDF