Publications by authors named "Debora Scheffer"

Purpose: The aim of this study was to identify a blood-flow-restriction (BFR) endurance exercise protocol that maximizes metabolic strain and minimizes muscle fatigue.

Methods: Twelve healthy participants accomplished 5 different interval cycling endurance exercises (2-min work, 1-min rest) in a randomized order: (1) control, low intensity with unrestricted blood flow (CON30); (2) low intensity with intermittent BFR (i-BFR30, ∼150 mm Hg); (3) low intensity with continuous BFR (c-BFR, ∼100 mm Hg); (4) unloaded cycling with i-BFR0 (∼150 mm Hg); and (5) high intensity (HI) with unrestricted blood flow. Force production, creatine kinase activity, antioxidant markers, blood pH, and potassium (K+) were measured in a range of 5 minutes before and after each cycling exercise protocol.

View Article and Find Full Text PDF

Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress.

View Article and Find Full Text PDF

Fatigue is a common symptom of Parkinson's disease that compromises significantly the patients' quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson's disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor.

View Article and Find Full Text PDF

Our objective was to investigate whether the pulp and paper mill industry effluent could affect the testis and Sertoli cells in a fast exposure period. For this, the present study was carried out in immature rats at 10-day-old. Testis treated with 4% effluent for 1 h presented changes in energy metabolism in terms of a decrease in lactate content and glucose uptake.

View Article and Find Full Text PDF

Stroke is a major cause of disability and death worldwide. Oxygen and glucose deprivation (OGD) in brain tissue preparations can reproduce several pathological features induced by stroke providing a valuable ex vivo protocol for studying the mechanism of action of neuroprotective agents. Guanosine, an endogenous guanine nucleoside, promotes neuroprotection in vivo and in vitro models of neurotoxicity.

View Article and Find Full Text PDF

A wide array of molecular pathways has been investigated during the past decade in order to understand the mechanisms by which the practice of physical exercise promotes neuroprotection and reduces the risk of developing communicable and non-communicable chronic diseases. While a single session of physical exercise may represent a challenge for cell homeostasis, repeated physical exercise sessions will improve immunosurveillance and immunocompetence. Additionally, immune cells from the central nervous system will acquire an anti-inflammatory phenotype, protecting central functions from age-induced cognitive decline.

View Article and Find Full Text PDF

Objective: To evaluate the antiinflammatory and analgesic effects of sepiapterin reductase (SPR) inhibition in a mouse model of inflammatory joint disease, and to determine whether urinary sepiapterin levels, as measured in mice and healthy human volunteers, could be useful as a noninvasive, translational biomarker of SPR inhibition/target engagement.

Methods: The collagen antibody-induced arthritis (CAIA) model was used to induce joint inflammation in mice. The effects of pharmacologic inhibition of SPR on thresholds of heat-, cold-, and mechanical-evoked pain sensitivity and on signs of inflammation were tested in mice with CAIA.

View Article and Find Full Text PDF

Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition.

View Article and Find Full Text PDF

Benefits of exercise have been documented for many diseases with a chronic progression, including obesity, diabetes mellitus, cardiovascular diseases, neurodegenerative diseases, certain types of cancers, and overall mortality. Low-grade systemic inflammation is a key component of these pathologies and it has been demonstrated that can be prevented by performing regularly physical exercise. The aim of this study was to examine the effect of lipopolysaccharide (LPS)-induced inflammation on glucose and insulin tolerance, exercise performance, production of urinary neopterin and striatal neurotransmitters levels in adult male C57BL/6 mice.

View Article and Find Full Text PDF
Article Synopsis
  • This study explored how early and long-term low-level laser therapy (LLLT) affects oxidative stress and inflammation after muscle injury in Wistar rats.
  • Rats were divided into four groups to assess the impact of LLLT (at doses of 3 and 5 J/cm²) initiated shortly after inducing muscle trauma.
  • Findings showed LLLT improved muscle recovery, reduced oxidative stress and inflammation, and restored normal locomotion, suggesting its benefits in managing acute muscle injuries.
View Article and Find Full Text PDF

The aim of this study was to evaluate the effects of therapeutic pulsed ultrasound with gold nanoparticles on oxidative stress parameters after traumatic muscle injury in Wistar rats. The animals were randomly divided into nine groups (n = 6 each): sham (uninjured muscle); muscle injury without treatment; muscle injury and treatment with dimethyl sulfoxide (15 mg/kg); muscle injury and treatment with gold nanoparticles (27 µg); muscle injury and treatment with dimethyl sulfoxide + gold nanoparticles (Plus); muscle injury and therapeutic pulsed ultrasound; muscle injury and therapeutic pulsed ultrasound + dimethyl sulfoxide; muscle injury and therapeutic pulsed ultrasound + gold nanoparticles; and muscle injury and therapeutic pulsed ultrasound + Plus. Gastrocnemius injury was induced by a single-impact blunt trauma.

View Article and Find Full Text PDF

This study analyzes oxidative stress in skeletal muscle using different resisted training protocols. We hypothesize that different types of training produce different specifics. To test our hypothesis, we defined 3 resistance training protocols and investigated the respective biochemical responses in muscle.

View Article and Find Full Text PDF

Aims: To investigate the effects physical training exerts on markers of oxidative stress in rats with chronic kidney disease (CKD).

Main Methods: Twenty-four male Wistar rats were divided into four groups (n=6): sham, CKD, exercise-sham and exercise-CKD. Surgical reduction of the renal mass was performed (5/6 nephrectomized) and exercise was conducted on a treadmill (50 min/day up to 1 km/h for, 5 days/week for eight weeks).

View Article and Find Full Text PDF

It has been demonstrated that reactive oxygen species (ROS) formation and oxidative damage markers are increased after muscle damage. Recent studies have demonstrated that low-level laser therapy (LLLT) modulates many biochemical processes mainly those related to reduction of muscular injures, increment of mitochondrial respiration and ATP synthesis, as well as acceleration of the healing process. The objective of the present investigation was to verify the influence of LLLT in some parameters of muscular injury, oxidative damage, antioxidant activity, and synthesis of collagen after traumatic muscular injury.

View Article and Find Full Text PDF

Introduction: The aim of the study was to evaluate the effects of TPU together with DMSO on oxidative stress parameters after eccentric exercise.

Methods: Thirty and six animals were divided in control; eccentric exercise (EE); EE+saline gel 0.9%; EE+TPU 0.

View Article and Find Full Text PDF

Physical exercise and smoking are environmental factors that generally cause opposite health-promoting adaptations. Both physical exercise and smoking converge on mitochondrial adaptations in various tissues, including the pro-oxidant nervous system. Here, we analyzed the impact of cigarette smoking on exercise-induced brain mitochondrial adaptations in the hippocampus and pre-frontal cortex of adult mice.

View Article and Find Full Text PDF

Infrequent exercise, typically involving eccentric actions, has been shown to cause oxidative stress and to damage muscle tissue. High taurine levels are present in skeletal muscle and may play a role in cellular defences against free radical-mediated damage. This study investigates the effects of taurine supplementation on oxidative stress biomarkers after eccentric exercise (EE).

View Article and Find Full Text PDF

Objective: The aim of the present study was to investigate oxidative stress markers and inflammatory response in triathletes after an Ironman race (IR).

Design: Descriptive research.

Participants: Eighteen well-trained male triathletes (mean age, 34.

View Article and Find Full Text PDF

Objective: Reactive oxygen species play an important role in the pathogenesis of chronic kidney disease (CKD). Physical exercise was suggested as a useful approach to diminish impaired oxidative defense mechanisms. This study sought to observe the effects of physical training before the induction of renal lesions on oxidative stress parameters in animals induced for CKD.

View Article and Find Full Text PDF