Publications by authors named "Debora Motta-Meira"

The high carbon intensity of present-day ethylene glycol (EG) production motivates interest in electrifying ethylene oxidation. Noting poor kinetics in prior reports of the organic electrooxidation of small hydrocarbons, we explored the design of mediators that activate and simultaneously stabilize light alkenes. A ruthenium-substituted polyoxometalate (Ru-POM, {Si[Ru(HO)WO]}) achieves 82% faradaic efficiency in EG production at 100 mA/cm under ambient conditions.

View Article and Find Full Text PDF

The electrochemical reduction of CO in acidic media offers the advantage of high carbon utilization, but achieving high selectivity to C products at a low overpotential remains a challenge. We identified the chemical instability of oxide-derived Cu catalysts as a reason that advances in neutral/alkaline electrolysis do not translate to acidic conditions. In acid, Cu ions leach from Cu oxides, leading to the deactivation of the C-active sites of Cu nanoparticles.

View Article and Find Full Text PDF

The demand for green hydrogen has raised concerns over the availability of iridium used in oxygen evolution reaction catalysts. We identify catalysts with the aid of a machine learning-aided computational pipeline trained on more than 36,000 mixed metal oxides. The pipeline accurately predicts Pourbaix decomposition energy () from unrelaxed structures with a mean absolute error of 77 meV per atom, enabling us to screen 2070 new metallic oxides with respect to their prospective stability under acidic conditions.

View Article and Find Full Text PDF

With heterogeneous catalysts, chemical promotion takes place at their surfaces. Even in the case of single-atom alloys, where small quantities of a reactive metal are dispersed within the main host, it is assumed that both elements are exposed and available to bond with the reactants. Here, we show, on the basis of X-ray absorption spectroscopy data, that in alloy catalysts made from Pt highly diluted in Cu the Pt atoms are located at the inner interface between the metal nanoparticles and the silica support instead.

View Article and Find Full Text PDF

Improving the kinetics and selectivity of CO/CO electroreduction to valuable multi-carbon products is a challenge for science and is a requirement for practical relevance. Here we develop a thiol-modified surface ligand strategy that promotes electrochemical CO-to-acetate. We explore a picture wherein nucleophilic interaction between the lone pairs of sulfur and the empty orbitals of reaction intermediates contributes to making the acetate pathway more energetically accessible.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new type of zeolite catalyst that contains single Rh (rhodium) sites stabilized by phosphorous, using a one-pot synthesis method.
  • This catalyst demonstrates excellent performance for ethylene hydroformylation at a low temperature of 50°C, largely due to the transformation of confined RhO clusters into active single Rh sites during the reaction.
  • The study outlines the importance of managing the physical and electronic characteristics of Rh species for achieving both high activity and selectivity in the hydroformylation process.
View Article and Find Full Text PDF

Multiferroics have tremendous potential to revolutionize logic and memory devices through new functionalities and energy efficiencies. To reach their optimal capabilities will require better understanding and enhancement of the ferroic orders and couplings. Herein, we use ϵ-FeO as a model system with a simplifying single magnetic ion.

View Article and Find Full Text PDF

The slow water dissociation process in alkaline electrolyte severely limits the kinetics of HER. The orientation of H O is well known to affect the dissociation process, but H O orientation is hard to control because of its random distribution. Herein, an atomically asymmetric local electric field was designed by IrRu dizygotic single-atom sites (IrRu DSACs) to tune the H O adsorption configuration and orientation, thus optimizing its dissociation process.

View Article and Find Full Text PDF

Atom trapping leads to catalysts with atomically dispersed RuO sites on (100) facets of ceria, as identified by spectroscopy and DFT calculations. This is a new class of ceria-based materials with Ru properties drastically different from the known M/ceria materials. They show excellent activity in catalytic NO oxidation, a critical step that requires use of large loadings of expensive noble metals in diesel aftertreatment systems.

View Article and Find Full Text PDF

Integrating plasmonic nanoparticles into the photoactive metal-organic matrix is highly desirable due to the plasmonic near field enhancement, complementary light absorption, and accelerated separation of photogenerated charge carriers at the junction interface. The construction of a well-defined, intimate interface is vital for efficient charge carrier separation, however, it remains a challenge in synthesis. Here we synthesize a junction bearing intimate interface, composed of plasmonic Ag nanoparticles and matrix with silver node via a facile one-step approach.

View Article and Find Full Text PDF

Driving metal-cluster-catalyzed high-temperature chemical reactions by sunlight holds promise for the development of negative-carbon-footprint industrial catalysis, which has yet often been hindered by the poor ability of metal clusters to harvest and utilize the full spectrum of solar energy. Here, we report the preparation of MoTiC MXene-supported Ru clusters (Ru/MoTiC) with pronounced broadband sunlight absorption ability and high sintering resistance. Under illumination of focused sunlight, Ru/MoTiC can catalyze the reverse water-gas shift (RWGS) reaction to produce carbon monoxide from the greenhouse gas carbon dioxide and renewable hydrogen with enhanced activity, selectivity, and stability compared to their nanoparticle counterparts.

View Article and Find Full Text PDF

Light harvesting, separation of charge carriers, and surface reactions are three fundamental steps that are essential for an efficient photocatalyst. Here we show that these steps in the TiO can be boosted simultaneously by disorder engineering. A solid-state reduction reaction between sodium and TiO forms a core-shell c-TiO@a-TiO(OH) heterostructure, comprised of HO-Ti-[O]-Ti surface frustrated Lewis pairs (SFLPs) embedded in an amorphous shell surrounding a crystalline core, which enables a new genre of chemical reactivity.

View Article and Find Full Text PDF
Article Synopsis
  • - Iridium-based catalysts are currently the best option for proton exchange membrane (PEM) water electrolysis but are expensive and scarce, leading researchers to seek alternatives.
  • - The study introduces a nickel-stabilized ruthenium dioxide (Ni-RuO) catalyst, which shows significantly improved activity and durability compared to traditional RuO in acidic environments.
  • - With over 1,000 hours of stability during operation, the Ni-RuO catalyst has potential for practical use in PEM water electrolysis and its effectiveness is supported by advanced theoretical and experimental analyses.
View Article and Find Full Text PDF

Electrochemically converting nitrate ions, a widely distributed nitrogen source in industrial wastewater and polluted groundwater, into ammonia represents a sustainable route for both wastewater treatment and ammonia generation. However, it is currently hindered by low catalytic activities, especially under low nitrate concentrations. Here we report a high-performance Ru-dispersed Cu nanowire catalyst that delivers an industrial-relevant nitrate reduction current of 1 A cm while maintaining a high NH Faradaic efficiency of 93%.

View Article and Find Full Text PDF

It has long been known that the thermal catalyst Cu/ZnO/AlO(CZA) can enable remarkable catalytic performance towards CO hydrogenation for the reverse water-gas shift (RWGS) and methanol synthesis reactions. However, owing to the direct competition between these reactions, high pressure and high hydrogen concentration (≥75%) are required to shift the thermodynamic equilibrium towards methanol synthesis. Herein, a new black indium oxide with photothermal catalytic activity is successfully prepared, and it facilitates a tandem synthesis of methanol at a low hydrogen concentration (50%) and ambient pressure by directly using by-product CO as feedstock.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have been applied in many fields due to their superior catalytic performance. Because of the unique properties of the single-atom-site, using the single atoms as catalysts to synthesize SACs is promising. In this work, we have successfully achieved Co SAC using Pt atoms as catalysts.

View Article and Find Full Text PDF

We explore the selective electrocatalytic hydrogenation of lignin monomers to methoxylated chemicals, of particular interest, when powered by renewable electricity. Prior studies, while advancing the field rapidly, have so far lacked the needed selectivity: when hydrogenating lignin-derived methoxylated monomers to methoxylated cyclohexanes, the desired methoxy group (-OCH) has also been reduced. The ternary PtRhAu electrocatalysts developed herein selectively hydrogenate lignin monomers to methoxylated cyclohexanes-molecules with uses in pharmaceutics.

View Article and Find Full Text PDF

Utilizing the molecular beam epitaxy technique, a nanoscale thin-film magnet of -axis-oriented SmCo and SmCo phases is stabilized. While typically in the prototype Sm(Co, Fe, Cu, Zr) pinning-type magnets, an ordered nanocomposite is formed by complex thermal treatments, here, a one-step approach to induce controlled phase separation in a binary Sm-Co system is shown. A detailed analysis of the extended X-ray absorption fine structure confirmed the coexistence of SmCo and SmCo phases with 65% SmCo and 35% SmCo.

View Article and Find Full Text PDF
Article Synopsis
  • Valleriite is a mineral notable for its potential as a source of metals and its unique 2D layered structure consisting of Fe-Cu sulfide and magnesium hydroxide, which remains poorly understood.
  • Research utilized advanced techniques such as X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, Mössbauer spectroscopy, and magnetic measurements to analyze two types of valleriite samples from Noril'sk, Russia, revealing distinctive properties compared to chalcopyrite and bornite.
  • The findings suggest that valleriite’s unique structure and properties may be advantageous for developing new composites involving transition metal sulfides and hydroxides, paving the way for various applications.
View Article and Find Full Text PDF

Conversion of clean solar energy to chemical fuels is one of the promising and up-and-coming applications of metal-organic frameworks. However, fast recombination of photogenerated charge carriers in these frameworks remains the most significant limitation for their photocatalytic application. Although the construction of homojunctions is a promising solution, it remains very challenging to synthesize them.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) have attracted significant attention due to their superior catalytic activity and selectivity. However, the nature of active sites of SACs under realistic reaction conditions is ambiguous. In this work, high loading Pt single atoms on graphitic carbon nitride (g-C N )-derived N-doped carbon nanosheets (Pt /NCNS) is achieved through atomic layer deposition.

View Article and Find Full Text PDF

In this work, an MWW-type zeolite with pillars containing silicon and niobium oxide was synthesized to obtain a hierarchical zeolite. The effect of niobium insertion in the pillaring process was determined by combining a controllable acidity and accessibility in the final material. All pillared materials had niobium occupying framework positions in pillars and extra-framework positions.

View Article and Find Full Text PDF

Nanostructured forms of stoichiometric InO are proving to be efficacious catalysts for the gas-phase hydrogenation of CO. These conversions can be facilitated using either heat or light; however, until now, the limited optical absorption intensity evidenced by the pale-yellow color of InO has prevented the use of both together. To take advantage of the heat and light content of solar energy, it would be advantageous to make indium oxide black.

View Article and Find Full Text PDF

Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro-beam X-ray absorption spectroscopy study together with the computational simulation and analysis (at the X-ray cell) of the light-matter interaction occurring in powdered TiO -based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non-noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu-Ni interaction in the bimetallic material.

View Article and Find Full Text PDF

Site poisoning is a powerful method to unravel the nature of active sites or reaction intermediates. The nature of the intermediates involved in the hydrogenation of CO was unraveled by poisoning alumina-supported cobalt catalysts with various concentrations of tin. The rate of formation of the main reaction products (methane and propylene) was found to be proportional to the concentration of multi-bonded CO, likely located in hollow sites.

View Article and Find Full Text PDF