Background And Aims: Tumor immunohistochemical staining (IHC) of DNA mismatch repair (MMR) proteins is often used to guide germline genetic testing and variant classification for patients with suspected Lynch syndrome. This analysis examined the spectrum of germline findings in a cohort of individuals showing abnormal tumor IHC.
Methods: We assessed individuals with reported abnormal IHC findings and referred for testing with a six-gene syndrome-specific panel (n=703).
Background: Healthcare providers increasingly use information about pathogenic variants in cancer predisposition genes, including sequence variants and large rearrangements (LRs), in medical management decisions. While sequence variant detection is typically robust, LRs can be difficult to detect and characterize and may be underreported as a cause for hereditary cancer risk. This report describes the outcomes of hereditary cancer genetic testing using a comprehensive strategy that employs next-generation sequencing (NGS) for LR detection, coupled with LR confirmation using repeat hybrid capture NGS, microarray comparative genomic hybridization (microarray-CGH), and/or multiplex ligation-dependent probe amplification (MLPA).
View Article and Find Full Text PDFPrevious analysis of next-generation sequencing (NGS) hereditary pan-cancer panel testing demonstrated that approximately 40% of TP53 pathogenic and likely pathogenic variants (PVs) detected have NGS allele frequencies between 10% and 30%, indicating that they likely are acquired somatically. These are seen more frequently in older adults, suggesting that most result from normal aging-related clonal hematopoiesis. For this analysis, apparent heterozygous germline TP53 PV carriers (NGS allele frequency 30-70%) were offered follow-up testing to confirm variant origin.
View Article and Find Full Text PDFNext-generation sequencing (NGS) hereditary pan-cancer panel testing can identify somatic variants, which exhibit lower allele frequencies than do germline variants and may confound hereditary cancer predisposition testing. This analysis examined the prevalence and characteristics of likely-somatic variants among 348,543 individuals tested using a clinical NGS hereditary pan-cancer panel. Variants showing allele frequencies between 10% and 30% were interpreted as likely somatic and identified in 753 (0.
View Article and Find Full Text PDFExpanded genetic test utilization to guide cancer management has driven the development of larger gene panels and greater diversity in the patient population pursuing testing, resulting in increased identification of atypical or technically challenging genetic findings. To ensure appropriate patient care, it is critical that genetic tests adequately identify and characterize these findings. We describe genetic testing challenges frequently encountered by our laboratory and the methodologies we employ to improve test accuracy for the identification and characterization of atypical genetic findings.
View Article and Find Full Text PDFCancer risks have been previously reported for some retrotransposon element (RE) insertions; however, detection of these insertions is technically challenging and very few oncogenic RE insertions have been reported. Here we evaluate RE insertions identified during hereditary cancer genetic testing using a comprehensive testing strategy. Individuals who had single-syndrome or pan-cancer hereditary cancer genetic testing from February 2004 to March 2017 were included.
View Article and Find Full Text PDFNext Generation Sequencing (NGS) multigene panels, which are routinely used to assess hereditary cancer risk, can detect both inherited germline variants and somatic variants in cancer-risk genes. We evaluated the frequency and distribution of likely somatic Pathogenic and Likely Pathogenic variants (PVs) detected in >220,000 individuals who underwent clinical testing with a 25-gene panel between September 2013 and March 2016. Likely somatic PVs are defined as variants with NGS read frequencies from 10% to 30%.
View Article and Find Full Text PDFBackground: Conventional Sanger sequencing reliably detects the majority of genetic mutations associated with hereditary cancers, such as single-base changes and small insertions or deletions. However, detection of genomic rearrangements, such as large deletions and duplications, requires special technologies. Microarray analysis has been successfully used to detect large rearrangements (LRs) in genetic disorders.
View Article and Find Full Text PDFPurpose: Genetic tests for the most commonly mutated genes in dilated cardiomyopathy (DCM) can confirm a clinical diagnosis in the proband and inform family management. Presymptomatic family members can be identified, allowing for targeted clinical monitoring to minimize adverse outcomes. However, the marked locus and allelic heterogeneity associated with DCM have made clinical genetic testing challenging.
View Article and Find Full Text PDFRationale: The myosin-binding protein C isoform 3 (MYBPC3) variant Arg502Trp has been identified in multiple hypertrophic cardiomyopathy (HCM) cases, but compelling evidence to support or refute the pathogenicity of this variant is lacking.
Objective: To determine the prevalence, origin and clinical significance of the MYBPC3 Arg502Trp variant.
Methods And Results: The prevalence of MYBPC3 Arg502Trp was ascertained in 1414 sequential HCM patients of primarily European descent.
Background: Danon disease is an X-linked dominant disorder characterized by the clinical triad of hypertrophic cardiomyopathy, skeletal myopathy, and variable mental retardation. Pathologically, autophagic vacuoles are noted in both skeletal and cardiac muscle. It exhibits an X-linked dominant mode of inheritance, and male carriers are severely affected, whereas female carriers develop milder and later-onset cardiac symptoms.
View Article and Find Full Text PDFAims: Warfarin is a commonly prescribed drug with a narrow therapeutic index. Adverse drug reactions owing to over- or under-dosing are common. It is now established that genetic differences between individuals play a major role in warfarin metabolism.
View Article and Find Full Text PDFRecent investigations have implicated long antisense noncoding RNAs in the epigenetic regulation of chromosomal domains. Here we show that Kcnq1ot1 is an RNA polymerase II-encoded, 91 kb-long, moderately stable nuclear transcript and that its stability is important for bidirectional silencing of genes in the Kcnq1 domain. Kcnq1ot1 interacts with chromatin and with the H3K9- and H3K27-specific histone methyltransferases G9a and the PRC2 complex in a lineage-specific manner.
View Article and Find Full Text PDFNew mutation detection technologies must keep pace by becoming more cost-effective while offering improved technical sensitivity and higher throughput capacity. In recent years, the number of mutation detection platforms available to the clinical researcher has grown to a point where it is difficult to keep track of all available options as well as their benefits and pitfalls. This unit provides an entry point for a variety of researchers who wish to analyze samples for known or novel mutations and need to determine which platform is most suited for their particular needs.
View Article and Find Full Text PDFThe imprinted gene cluster at the telomeric end of mouse chromosome 7 contains a differentially methylated CpG island, KvDMR, that is required for the imprinting of multiple genes, including the genes encoding the maternally expressed placental-specific transcription factor ASCL2, the cyclin-dependent kinase CDKN1C, and the potassium channel KCNQ1. The KvDMR, which maps within intron 10 of Kcnq1, contains the promoter for a paternally expressed, noncoding, antisense transcript, Kcnq1ot1. A 244-base-pair deletion of the promoter on the paternal allele leads to the derepression of all silent genes tested.
View Article and Find Full Text PDFChanges in DNA methylation patterns are frequently observed in human cancers and are associated with a decrease in tumor suppressor gene expression. Hypermethylation of the BRCA1 promoter has been reported in a portion of sporadic breast tumours that correspond to a reduction in BRCA1 transcription and expression. Questions remain concerning the maintenance of methylation free zones in promoter regions of tumor suppressor genes in normal tissues.
View Article and Find Full Text PDFThe imprinted gene cluster on mouse distal chromosome 7 contains a differentially methylated CpG island that maps within the Kcnq1 gene that has been shown to be required for the imprinting of multiple genes. To evaluate models for how this imprinting control region (ICR) regulates imprinting, we have characterized it structurally and functionally. We show that the region contains a promoter for a paternally expressed anti-sense transcript, Kcnq1ot1, and we define the extent of the minimal promoter.
View Article and Find Full Text PDF