Publications by authors named "Debora Guerini Souza"

Article Synopsis
  • The study aimed to compare the in vitro binding characteristics of three radiotracers ([F]flortaucipir, [F]MK6240, [F]PI2620) in postmortem brain samples from Alzheimer’s disease (AD) and control groups.
  • Significant differences in tracer binding were found in the whole-brain hemisphere, prefrontal cortex, and hippocampus between AD and control tissues, with [F]MK6240 and [F]PI2620 showing better performance in differentiating AD cases.
  • The results indicate that [F]MK6240 and [F]PI2620 have higher selectivity and binding to AD tissues compared to [F]flortaucipir,
View Article and Find Full Text PDF

Hypercholesterolemia has been associated with cognitive dysfunction and neurodegenerative diseases. Moreover, this metabolic condition disrupts the blood-brain barrier, allowing low-density lipoprotein (LDL) to enter the central nervous system. Thus, we investigated the effects of LDL exposure on mitochondrial function in a mouse hippocampal neuronal cell line (HT-22).

View Article and Find Full Text PDF

Non ketotic hyperglycinemia (NKH) is an inborn error of glycine metabolism caused by mutations in the genes encoding glycine cleavage system proteins. Classic NKH has a neonatal onset, and patients present with severe neurodegeneration. Although glycine accumulation has been implicated in NKH pathophysiology, the exact mechanisms underlying the neurological damage and white matter alterations remain unclear.

View Article and Find Full Text PDF

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disorder mediated by immune-humoral responses directed against central nervous system (CNS) antigens. Most patients are positive for specific immunoglobulin G (IgG) auto-antibodies for aquaporin-4 (AQP4), a water channel present in astrocytes. Antigen-antibody binding promotes complement system cascade activation, immune system cell infiltration, IgG deposition, loss of AQP4 and excitatory amino acid transporter 2 (EAAT2) expression on the astrocytic plasma membrane, triggering necrotic destruction of spinal cord tissue and optic nerves.

View Article and Find Full Text PDF

Purpose: Previously showed that dietary trans fatty acids (TFAs) may cause systemic inflammation and affect the central nervous system (CNS) in Wistar rats by increased levels of cytokines in the cerebrospinal fluid (CSF) and serum (Longhi et al. Eur J Nutr 56(3):1003-1016, 1). Here, we aimed to clarifying the impact of diets with different TFA concentrations on cerebral tissue, focusing on hippocampus and cortex and behavioral performance.

View Article and Find Full Text PDF

Astrocytes are versatile cells involved in synaptic information processing, energy metabolism, redox homeostasis, inflammatory response, and structural support of the brain. Recently, we established a routine protocol of cultured astrocytes derived from adult and aged Wistar rats, which present several different responses compared to newborn astrocytes, commonly used to characterize the role of the astrocytes in the central nervous system. Previous studies hypothesized that astrocyte cultures prepared from adult animals derive from immature precursors present in the adult tissue throughout life.

View Article and Find Full Text PDF

Alcoholism has been characterized as a systemic pro-inflammatory condition and alcohol withdrawal has been linked to various changes in the brain homeostasis, including oxidative stress and glutamate hyperactivity. N-acetylcysteine (NAC) is an anti-inflammatory and antioxidant multi-target drug with promising results in psychiatry, including drug addiction. We assessed the effects of NAC on the serum and brain inflammatory cytokines after cessation of chronic alcohol treatment in rats.

View Article and Find Full Text PDF

Resveratrol is a dietary polyphenol that displays neuroprotective properties in several in vivo and in vitro experimental models, by modulating oxidative and inflammatory responses. Glutathione (GSH) is a key antioxidant in the central nervous system (CNS) that modulates several cellular processes, and its depletion is associated with oxidative stress and inflammation. Therefore, this study sought to investigate the protective effects of resveratrol against GSH depletion pharmacologically induced by buthionine sulfoximine (BSO) in C6 astroglial cells, as well as its underlying cellular mechanisms.

View Article and Find Full Text PDF

Guanosine, a guanine-based purine, has been shown to exert beneficial roles in in vitro and in vivo injury models of neural cells. Guanosine is released from astrocytes and modulates important astroglial functions, including glutamatergic metabolism, antioxidant, and anti-inflammatory activities. Astrocytes are crucial for regulating the neurotransmitter system and synaptic information processes, ionic homeostasis, energy metabolism, antioxidant defenses, and the inflammatory response.

View Article and Find Full Text PDF

Resveratrol, a polyphenol found in grapes and red wine, exhibits antioxidant, anti-inflammatory, anti-aging and, neuroprotective effects. Resveratrol also plays a significant role modulating glial functionality, protecting the health of neuroglial cells against several neuropsychiatric in vivo and in vitro experimental models. Mitochondrial impairment strongly affected astrocyte functions and consequently brain homeostasis.

View Article and Find Full Text PDF

Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection.

View Article and Find Full Text PDF

Astrocytes are dynamic cells that maintain brain homeostasis, regulate neurotransmitter systems, and process synaptic information, energy metabolism, antioxidant defenses, and inflammatory response. Aging is a biological process that is closely associated with hippocampal astrocyte dysfunction. In this sense, we demonstrated that hippocampal astrocytes from adult and aged Wistar rats reproduce the glial functionality alterations observed in aging by evaluating several senescence, glutamatergic, oxidative and inflammatory parameters commonly associated with the aging process.

View Article and Find Full Text PDF

Astrocytes are multitasking players in brain complexity, possessing several receptors and mechanisms to detect, participate and modulate neuronal communication. The functionality of astrocytes has been mainly unraveled through the study of primary astrocyte cultures, and recently our research group characterized a model of astrocyte cultures derived from adult Wistar rats. We, herein, aim to characterize other basal functions of these cells to explore the potential of this model for studying the adult brain.

View Article and Find Full Text PDF

Purpose: Recent data regarding trans fatty acids (TFAs) have implicated these lipids as particularly deleterious to human health, causing systemic inflammation, endothelial dysfunction and possibly inflammation in the central nervous system (CNS). We aimed to clarify the impact of partially hydrogenated soybean oil (PHSO) with different TFA concentrations on cerebrospinal fluid (CSF), serum and hepatic parameters in adult Wistar rats.

Methods: Wistar rats (n = 15/group) were fed either a normolipidic diet or a hyperlipidic diet for 90 days.

View Article and Find Full Text PDF

Guanosine, a guanine-based purine, is an extracellular signaling molecule that is released from astrocytes and has been shown to promote central nervous system defenses in several in vivo and in vitro injury models. Our group recently demonstrated that guanosine exhibits glioprotective effects in the C6 astroglial cell line by associating the heme oxygenase-1 (HO-1) signaling pathway with protection against azide-induced oxidative stress. Astrocyte overactivation contributes to the triggering of brain inflammation, a condition that is closely related to the development of many neurological disorders.

View Article and Find Full Text PDF

Astrocytes, the most versatile cells of the central nervous system, play an important role in the regulation of neurotransmitter homeostasis, energy metabolism, antioxidant defenses and the anti-inflammatory response. Recently, our group characterized cortical astrocyte cultures from adult Wistar rats. In line with that work, we studied glial function using an experimental in vitro model of aging astrocytes (30 days in vitro after reaching confluence) from newborn (NB), adult (AD) and aged (AG) Wistar rats.

View Article and Find Full Text PDF

Resveratrol, a phytoalexin found in grapes and wine, exhibits antioxidant, anti-inflammatory, anti-aging and antitumor activities. Resveratrol also protects neurons and astrocytes in several neurological disease models. Astrocytes are responsible for modulating neurotransmitter systems, synaptic information, ionic homeostasis, energy metabolism, antioxidant defense and inflammatory response.

View Article and Find Full Text PDF

Hyperammonemia induces significant changes in the central nervous system (CNS) in direct association with astroglial functions, such as oxidative damage, glutamatergic excitotoxicity, and impaired glutamine synthetase (GS) activity and pro-inflammatory cytokine release. Classically, lipoic acid (LA) and N-acetylcysteine (NAC) exhibit antioxidant and anti-inflammatory activities by increasing glutathione (GSH) biosynthesis and decreasing pro-inflammatory mediator levels in glial cells. Thus, we evaluated the protective effects of LA and NAC against ammonia cytotoxicity in C6 astroglial cells.

View Article and Find Full Text PDF

Guanosine, a guanine-based purine, is an extracellular signaling molecule that is released from astrocytes and shows neuroprotective effects in several in vivo and in vitro studies. Our group recently showed that guanosine presents antioxidant properties in C6 astroglial cells. The heme oxygenase 1 signaling pathway is associated with protection against oxidative stress.

View Article and Find Full Text PDF

Background And Purpose: Stroke is a devastating disease. Both excitotoxicity and oxidative stress play important roles in ischemic brain injury, along with harmful impacts on ischemic cerebral tissue. As guanosine plays an important neuroprotective role in the central nervous system, the purpose of this study was to evaluate the neuroprotective effects of guanosine and putative cerebral events following the onset of permanent focal cerebral ischemia.

View Article and Find Full Text PDF

Astrocytes are responsible for modulating neurotransmitter systems and synaptic information processing, ionic homeostasis, energy metabolism, maintenance of the blood-brain barrier, and antioxidant and inflammatory responses. Our group recently published a culture model of cortical astrocytes obtained from adult Wistar rats. In this study, we established an in vitro model for hippocampal astrocyte cultures from adult (90 days old) and aged (180 days old) Wistar rats.

View Article and Find Full Text PDF

Guanosine, a guanine-based purine, is recognized as an extracellular signaling molecule that is released from astrocytes and confers neuroprotective effects in several in vivo and in vitro studies. Astrocytes regulate glucose metabolism, glutamate transport, and defense mechanism against oxidative stress. C6 astroglial cells are widely used as an astrocyte-like cell line to study the astrocytic function and signaling pathways.

View Article and Find Full Text PDF

Astrocytes, a major class of glial cells, regulate neurotransmitter systems, synaptic processing, ion homeostasis, antioxidant defenses and energy metabolism. Astrocyte cultures derived from rodent brains have been extensively used to characterize astrocytes' biochemical, pharmacological and morphological properties. The aims of this study were to develop a protocol for routine preparation and to characterize a primary astrocyte culture from the brains of adult (90 days old) Wistar rats.

View Article and Find Full Text PDF

Chronic cerebral hypoperfusion contributes to a cognitive decline related to brain disorders. Its experimental model in rats is a permanent bilateral common carotid artery occlusion (2VO). Overstimulation of the glutamatergic system excitotoxicity due to brain energetic disturbance in 2VO animals seems to play a pivotal role as a mechanism of cerebral damage.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2r1j0eounqnv29k0t5711kpc5aechais): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once