Traumatic nerve injuries are common lesions that affect several hundred thousand humans, as well as dogs and cats. The assessment of nerve regeneration through animal models may provide information for translational research and future therapeutic options that can be applied mutually in veterinary and human medicine, from a One Health perspective. This review offers a hands-on vision of the non-invasive and conservative approaches to peripheral nerve injury, focusing on the role of neurorehabilitation in nerve repair and regeneration.
View Article and Find Full Text PDFThis prospective observational cohort pilot study included 22 cats diagnosed with partial traumatic brachial plexus injury (PTBPI), aiming to explore responses to an early intensive neurorehabilitation protocol in a clinical setting. This protocol included functional electrical stimulation (FES), locomotor treadmill training and kinesiotherapy exercises, starting at the time with highest probability of nerve repair. The synergetic benefits of this multimodal approach were based on the potential structural and protective role of proteins and the release of neurotrophic factors.
View Article and Find Full Text PDFFluctuations in temperature severely impact crop yield and trigger various plant response mechanisms. In a recent study, Zhou et al. discovered a non-canonical role of autophagy in mediating Golgi apparatus restoration after short-term heat stress (HS).
View Article and Find Full Text PDFLocomotor training (LT) is task-specific repetitive training, with sensorimotor stimulation and intensive exercises that promote neuromuscular reorganization. This study aimed to observe if LT could be initiated safely in the first 3−15 days after surgery in tetraplegic C1−C5 IVDD—Hansen type I dogs. This prospective blinded clinical study was conducted at two rehabilitation centers in Portugal, with 114 grade 1 (MFS/OFS) dogs, divided by the presence of spinal hyperesthesia into the SHG (spinal hyperesthesia group) (n = 74) and the NSHG (non-spinal hyperesthesia group) (n = 40), evaluated in each time point for two weeks according to a neurorehabilitation checklist by three observers for inter-agreement relation.
View Article and Find Full Text PDF(1) Background: Systemic inflammatory response syndrome (SIRS) can occur due to a large number of traumatic or non-traumatic diseases. Hyperbaric oxygen therapy (HBOT) may be used as a main or adjuvant treatment for inflammation, leading to the main aim of this study, which was to verify the applicability of HBOT as a safe and tolerable tool in SIRS-positive dogs. (2) Methods: This prospective cohort study included 49 dogs who showed two or more parameters of SIRS, divided into the Traumatic Study Group (n = 32) and the Non-Traumatic Study Group (n = 17).
View Article and Find Full Text PDFBackground: In veterinary medicine, wounds have a high incidence in clinical practice. A technique that can accelerate healing has been extensively studied, and the treatment with hyperbaric oxygen therapy (HBOT) is currently recognized as one of the best adjuvant treatments in this matter.
Aim: The main objective of this pilot clinical study was to assess the therapeutic effect of HBOT in severe wounds classified according to the Modified Vancouver Scale (MVS) between 10 and 15 points or greater than 15 points (MVS > 10 and ≤ 15; MVS > 15).
This retrospective controlled clinical study aimed to verify if intensive neurorehabilitation (INR) could improve ambulation faster than spontaneous recovery or conventional physiotherapy and provide a possible therapeutic approach in post-surgical paraplegic deep pain perception-positive (DPP) (with absent/decreased flexor reflex) and DPP-negative (DDP) dogs, with acute intervertebral disc extrusion. A large cohort of T10-L3 Spinal Cord Injury (SCI) dogs ( = 367) were divided into a study group (SG) ( = 262) and a control group (CG) ( = 105). The SG was based on prospective clinical cases, and the CG was created by retrospective medical records.
View Article and Find Full Text PDFThis case series study aimed to evaluate the safety, feasibility, and positive outcome of the neurorehabilitation multimodal protocol (NRMP) in 16 chronic post-surgical IVDD Hansen type I dogs, with OFS 0/DPP- ( = 9) and OFS 1/DPP+ ( = 7). All were enrolled in the NRMP for a maximum of 90 days and were clinically discharged after achieving ambulation. The NRMP was based on locomotor training, functional electrical stimulation, transcutaneous electrical spinal cord stimulation, and 4-aminopyridine (4-AP) pharmacological management.
View Article and Find Full Text PDFThis article aimed to evaluate the safety and efficacy of intensive neurorehabilitation in paraplegic cats, with no deep pain perception (grade 0 on the modified Frankel scale), with more than three months of injury. Nine cats, admitted to the Arrábida Veterinary Hospital/Arrábida Animal Rehabilitation Center (CRAA), were subjected to a 12-week intensive functional neurorehabilitation protocol, based on ground and underwater treadmill locomotor training, electrostimulation, and kinesiotherapy exercises, aiming to obtain a faster recovery to ambulation and a modulated locomotor pattern of flexion/extension. Of the nine cats that were admitted in this study, 56% ( = 5) recovered from ambulation, 44% of which (4/9) did so through functional spinal locomotion by reflexes, while one achieved this through the recovery of deep pain perception.
View Article and Find Full Text PDFIn human medicine there was no evidence registered of a significant difference in recovery between body weight-supported treadmill training (BWSTT) and conventional over-ground (COGI). There isn't any similar study in veterinary medicine. Thus, this study aimed to compare the locomotor recovery obtained in incomplete SCI (T11-L3 Hansen type I) post-surgical dogs following BWSTT or COGI protocols, describing their evolution during 7 weeks in regard to OFS classifications.
View Article and Find Full Text PDFDomestic animals with severe spontaneous spinal cord injury (SCI), including dogs and cats that are deep pain perception negative (DPP-), can benefit from specific evaluations involving neurorehabilitation integrative protocols. In human medicine, patients without deep pain sensation, classified as grade A on the American Spinal Injury Association (ASIA) impairment scale, can recover after multidisciplinary approaches that include rehabilitation modalities, such as functional electrical stimulation (FES), transcutaneous electrical spinal cord stimulation (TESCS) and transcranial direct current stimulation (TDCS). This review intends to explore the history, biophysics, neurophysiology, neuroanatomy and the parameters of FES, TESCS, and TDCS, as safe and noninvasive rehabilitation modalities applied in the veterinary field.
View Article and Find Full Text PDFA novel bovine trypsin isoform was purified from commercial sample by ion exchange chromatography by Sephadex SP C50®. New isoform contains in addition of loss of N-terminus hexapeptide (as found in parent molecule β-trypsin) an intra-chain split between Lys-155 and Ser-156. The novel enzyme denominate γ-trypsin showed similar properties with α-trypsin isoform in polypeptide number chain (two chain), molecular masses (23,312 Da), secondary structure, hydrodynamic radius and others.
View Article and Find Full Text PDF