Members of the Shank protein family are master scaffolds of the postsynaptic architecture and mutations within the SHANK genes are causally associated with autism spectrum disorders (ASDs). We generated a Shank2-Shank3 double knockout mouse that is showing severe autism related core symptoms, as well as a broad spectrum of comorbidities. We exploited this animal model to identify cortical brain areas linked to specific autistic traits by locally deleting Shank2 and Shank3 simultaneously.
View Article and Find Full Text PDFScanning transmission electron microscopic (STEM) tomography of high-pressure frozen, freeze-substituted semi-thin sections is one of multiple approaches for three-dimensional recording and visualization of electron microscopic samples. Compared to regular TEM tomography thicker sample sections can be investigated since chromatic aberration due to inelastic scattering is not a limit. The method is ideal to investigate subcellular compartments or organelles such as synapses, mitochondria, or microtubule arrangements.
View Article and Find Full Text PDFAcute mismatch between metabolic requirements of neurons and nutrients/growth factors availability characterizes several neurological conditions such as traumatic brain injury, stroke and hypoglycemia. Although the effects of this mismatch have been investigated at cell biological level, the effects on synaptic structure and function are less clear. Since synaptic activity is the most energy-demanding neuronal function and it is directly linked to neuronal networks functionality, we have explored whether nutrient limitation (NL) affects the ultrastructure, function and composition of pre and postsynaptic terminals.
View Article and Find Full Text PDF