Toluene is an air pollutant widely used as an organic solvent in industrial production and emitted by fossil fuel combustion, in addition to being used as a drug of abuse. Its toxic effects in the central nervous system have not been well established, and how and which neurons are affected remains unknown. Hence, this study aimed to fill this gap by investigating three central questions: 1) How does toluene induce neurotoxicity? 2) Which neurons are affected? And 3) What are the long-term effects induced by airborne exposure to toluene? To this end, a Caenorhabditis elegans model was employed, in which worms at the fourth larval stage were exposed to toluene in the air for 24 h in a vapor chamber to simulate four exposure scenarios.
View Article and Find Full Text PDFQuinolinic acid (QUIN) is an agonist of the neurotransmitter glutamate (Glu) capable of binding to N-methyl-D-aspartate receptors (NMDAR) increasing glutamatergic signaling. QUIN is known for being an endogenous neurotoxin, able to induce neurodegeneration. In Caenorhabditis elegans, the mechanism by which QUIN induces behavioral and metabolic toxicity has not been fully elucidated.
View Article and Find Full Text PDFMol Neurobiol
September 2021
Traumatic brain injury (TBI) is considered a public health problem and is often related to motor and cognitive disabilities, besides behavioral and emotional changes that may remain for the rest of the subject's life. Resident astrocytes and microglia are the first cell types to start the inflammatory cascades following TBI. It is widely known that continuous or excessive neuroinflammation may trigger many neuropathologies.
View Article and Find Full Text PDFFibromyalgia (FM) is one of the most common musculoskeletal pain conditions. Although the aetiology of FM is still unknown, mitochondrial dysfunction and the overproduction of reactive oxygen intermediates (ROI) are common characteristics in its pathogenesis. The reserpine experimental model can induce FM-related symptoms in rodents by depleting biogenic amines.
View Article and Find Full Text PDFTraumatic brain injury (TBI) constitutes a heterogeneous cerebral insult induced by traumatic biomechanical forces. Mitochondria play a critical role in brain bioenergetics, and TBI induces several consequences related with oxidative stress and excitotoxicity clearly demonstrated in different experimental model involving TBI. Mitochondrial bioenergetics alterations can present several targets for therapeutics which could help reduce secondary brain lesions such as neuropsychiatric problems, including memory loss and motor impairment.
View Article and Find Full Text PDFOrganic selenium compounds are widely associated with numerous pharmacological properties. However, selenium compounds, such as Ebselen (Ebs) and Diphenyl Diselenide (DPDS), could interact with mitochondrial respiratory complexes, especially with thiol groups. The present study evaluated whether the insertion of functional groups, o-methoxy, and p-methyl on organic selenium compounds promotes changes in mitochondrial functioning parameters and whether this is related to antibacterial activity.
View Article and Find Full Text PDFMitochondria play an important role in cell life and in the regulation of cell death. In addition, mitochondrial dysfunction contributes to a wide range of neuropathologies. The nucleoside Guanosine (GUO) is an endogenous molecule, presenting antioxidant properties, possibly due to its direct scavenging ability and/or from its capacity to activate the antioxidant defense system.
View Article and Find Full Text PDFThioacetamide (TAA) is a hepatotoxin that rapidly triggers the necrotic process and oxidative stress in the liver. Nevertheless, organic selenium compounds, such as β-selenoamines, can be used as pharmacological agents to diminish the oxidative damage. Thus, the aim of this study was to investigate the protective effect of the antioxidant β-selenoamines on TAA-induced oxidative stress in mice.
View Article and Find Full Text PDF