Publications by authors named "Debora Elisabet Velez"

Several studies provide evidence that erythropoietin (EPO) could play an important role in the recovery of the heart subjected to ischemia-reperfusion. In this regard, it has been suggested that EPO could be involved in protein kinase B (Akt) activation as a cell survival protein. The aim of the present study was to investigate the effects of EPO on the Akt/glycogen synthase kinase 3 beta (GSK-3β) pathway in the presence or absence of wortmannin (W, Akt inhibitor) and its relationship with mitochondrial morphology and function preservation in ischemic-reperfused rat hearts.

View Article and Find Full Text PDF

Background And Aim: Autophagy has recently emerged as a potential and promising therapeutic approach to maintain cardiac cellular homeostasis. The aim of the present study was to investigate the role of autophagy in the ischemic-reperfused atrial myocardium.

Methods: Isolated rat left atria subjected to simulated ischemia-reperfusion were used.

View Article and Find Full Text PDF

Recent studies have provided evidence that triiodothyronine (T3) might play an effective role in the recovery of ischemic myocardium, through the preservation of mitochondrial function and the improvement of energy substrate metabolism. To this respect, it has been suggested that T3 could activate AMP-activated protein kinase (AMPK), the cellular 'fuel-gauge' enzyme, although its role has yet to be elucidated. The aim of the present study was to investigate the effects produced by acute treatment with T3 (60 nM) and the pharmacological inhibition of AMPK by compound C on isolated rat left atria subjected to 75 min simulated ischemia-75 min reperfusion.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a serine-threonine kinase that functions primarily as a metabolic sensor to coordinate anabolic and catabolic processes in the cell, via phosphorylation of multiple proteins involved in metabolic pathways, aimed to re-establish energy homeostasis at a cell-autonomous level. Myocardial ischemia and reperfusion represents a metabolic stress situation for myocytes. Whether AMPK plays a critical role in the metabolic and functional responses involved in these conditions remains uncertain.

View Article and Find Full Text PDF

Ischemic preconditioning (IPC) is one of the most powerful interventions to reduce ischemia-reperfusion injury. The aim of the present study was to investigate the involvement of the phosphatidylinositol-3-kinases (PI3Ks) family in cardioprotection exerted by IPC and the relationship between preservation of mitochondrial morphology and ATP synthesis capacity. In this regard, macroautophagy (autophagy) is considered a dynamic process involved in the replacement of aged or defective organelles under physiological conditions.

View Article and Find Full Text PDF

Although autophagy is a prominent feature of myocardial ischaemia and reperfusion, its functional significance is unclear and controversial. In order to gain a deeper insight into the role of autophagy in myocardial ischaemia-reperfusion, we explored the effects of the pharmacological inhibitor of autophagy 3-methyladenine (3-MA). Isolated rat atria subjected to simulated 75-min ischaemia/75-min reperfusion (Is-Rs) in the presence or absence of 3-MA were used.

View Article and Find Full Text PDF