Publications by authors named "Debora B Lima"

Multiple arthropod pests can affect the same crop in agricultural systems, requiring the integration of control methods. In the present study, the effects of residual exposure to four broad-spectrum insecticides/acaricides (azadiractin, abamectin, chlorfenapyr, and fenpyroximate) on immature (development and survival time) and adult females (longevity, fecundity, and fertility life table parameters) of the predatory mite Neoseiulus barkeri were evaluated. Additionally, the insecticides/acaricides were categorized according to their selectivity based on the classification proposed by the International Organization for Biological Control (IOBC) for assessing the susceptibility of arthropods in laboratory experiments.

View Article and Find Full Text PDF

Predation is an important interaction that can change the structure of arthropod communities across both temporal and spatial scales. In agricultural systems predation can reduce the population levels of several arthropod pest species of a community. This predator-prey interaction involves the predator searching and handling behaviors.

View Article and Find Full Text PDF

The meristematic region of Cocos nucifera fruits can be colonized by various species of mites, including Steneotarsonemus concavuscutum, Steneotarsonemus furcatus, and Aceria guerreronis. The consequence of this colonization is the development of necrotic lesions on the fruit, and sometimes its abortion. Losses are commonly attributed to A.

View Article and Find Full Text PDF

The accurate characterization of biological control agents is a key step in control programs. Recently, Amblyseius largoensis from Thailand were introduced in Brazil to evaluate their efficiency for the control of the red palm mite, Raoiella indica. The aim of this study was to confirm their identification and to characterize the population from Thailand, comparing it to populations of the Americas and Indian Ocean islands.

View Article and Find Full Text PDF

Walking is important to dispersal on plants and colonization of new plants by predatory mites, and this activity is potentially affected by the presence of acaricides. This possibility was investigated in coconut fruits infested with the coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae), where colonization by the predator Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae) was monitored. The following acaricides were evaluated for influence on the process of colonization by the predatory mite: abamectin, azadirachtin, and fenpyroximate.

View Article and Find Full Text PDF

Organisms are adapted to recognize environmental cues that can provide information about predation risk or competition. Non-vagrant eriophyoid mites mainly avoid predation by using habitats that are difficult for predators to access (galls or confined spaces in plants) such as the meristematic region of the coconut fruit, which is inhabited by the phytophagous mites Aceria guerreronis and Steneotarsonemus concavuscutum. The objective of this study was to investigate the response of A.

View Article and Find Full Text PDF

Background: An understanding of the causes and consequences of dispersal is vital for managing populations. Environmental contaminants, such as pesticides, provide potential environmental context-dependent stimuli for dispersal of targeted and non-targeted species, which may occur not only for active but also for passive dispersal, although such a possibility is frequently neglected. Here, we assessed the potential of food deprivation and acaricides to interfere with the take-off for passive (wind) dispersal of the predatory mite Neoseiulus baraki.

View Article and Find Full Text PDF

Critical Time Intervention (CTI) is a time-limited mental health intervention offered to people with mental disorders during critical/transition periods. This study assesses the impact of CTI-BR on social performance and quality of life within a population in the process of deinstitutionalization, after long-term hospitalization in a psychiatric institution. The study population was split into two groups, one of which received CTI plus the regular care.

View Article and Find Full Text PDF

The coconut production system, in which the coconut mite Aceria guerreronis is considered a key pest, provides an interesting model for integration of biological and chemical control. In Brazil, the most promising biological control agent for the coconut mite is the phytoseiid predator Neoseiulus baraki. However, acaricides are widely used to control the coconut mite, although they frequently produce unsatisfactory results.

View Article and Find Full Text PDF

Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years.

View Article and Find Full Text PDF

The coconut mite, Aceria guerreronis Keifer, is a major pest of coconut palm in the world. The control of this pest species is done through acaricide applications at short time intervals. However, the predators of this pest may also be affected by acaricides.

View Article and Find Full Text PDF

Aceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of the coconut (Cocos nucifera L.), and the use of pesticides is the current method to control it. However, no standard toxicological tests exist to select and assess the efficiency of molecules against the coconut mite.

View Article and Find Full Text PDF

The dispersal of plant-feeding mites can occur involuntarily, through transportation of infested plant parts, or voluntarily, by walking to new plant parts or to suitable spots where biotic (phoresis) or abiotic (wind, agricultural tools, etc.) factors carry them over long distances. Elucidating the dispersal mechanisms of the coconut mite, Aceria guerreronis Keifer, is important for understanding the process of colonization of new fruits of a same or different plants, essential for the improvement of control strategies of this serious coconut pest.

View Article and Find Full Text PDF

Several predatory mites have been found in association with the coconut mite, Aceria guerreronis Keifer, in northeast Brazil. However, the latter still causes damage to coconut in that region. The objectives of this work were to compare the frequencies of occurrence of Neoseiulus (Phytoseiidae) and Proctolaelaps (Melicharidae) species on standing and aborted coconuts in coastal Pernambuco State, northeast Brazil and to analyze their possible limitations as control agents of the coconut mite, based on evaluations of the restrictions they may have to access the microhabitat inhabited by the pest and their functional and reproductive responses to increasing densities of the latter.

View Article and Find Full Text PDF

The phytophagous mite Aceria guerreronis Keifer is an important pest of coconut worldwide. A promising method of control for this pest is the use of predatory mites. Neoseiulus baraki (Athias-Henriot) and Proctolaelaps bickleyi Bram are predatory mites found in association with A.

View Article and Find Full Text PDF