Predicting drug-target interactions (DTI) is a crucial stage in drug discovery and development. Understanding the interaction between drugs and targets is essential for pinpointing the specific relationship between drug molecules and targets, akin to solving a link prediction problem using information technology. While knowledge graph (KG) and knowledge graph embedding (KGE) methods have been rapid advancements and demonstrated impressive performance in drug discovery, they often lack authenticity and accuracy in identifying DTI.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
August 2024
IEEE Trans Neural Netw Learn Syst
September 2023
Causal effect estimation from observational data is a crucial but challenging task. Currently, only a limited number of data-driven causal effect estimation methods are available. These methods either provide only a bound estimation of causal effects of treatment on the outcome or generate a unique estimation of the causal effect but making strong assumptions on data and having low efficiency.
View Article and Find Full Text PDF