The Dot/Icm type IVB secretion system (T4BSS) is a large, multisubunit complex that exports a vast array of substrates into eukaryotic host cells. DotO, a distant homolog of the T4ASS ATPase VirB4, associates with the bacterial inner membrane despite lacking hydrophobic transmembrane domains. Employing a genetic approach, we found DotO's membrane association is mediated by three inner-membrane Dot/Icm components, IcmT, and a combined DotJ-DotI complex (referred to as DotJI).
View Article and Find Full Text PDFDPANN is a widespread and diverse group of archaea characterized by their small size, reduced genome, limited metabolic pathways, and symbiotic existence. Known DPANN species are predominantly obligate ectosymbionts that depend on their host for proliferation. The structural and molecular details of host recognition, host-DPANN intercellular communication, and host adaptation in response to DPANN attachment remain unknown.
View Article and Find Full Text PDFDPANN archaea are an enigmatic superphylum that are difficult to isolate and culture in the laboratory due to their specific culture conditions and apparent ectosymbiotic lifestyle. Here, we successfully isolated and cultivated a coculture system of a novel Nanobdellota archaeon YN1 and its host Sulfurisphaera ohwakuensis YN1HA. We characterized the coculture system by complementary methods, including metagenomics and metabolic pathway analysis, fluorescence microscopy, and high-resolution electron cryo-tomography (cryoET).
View Article and Find Full Text PDFEphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6.
View Article and Find Full Text PDFDNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp.
View Article and Find Full Text PDFMany bacteria produce antimicrobial compounds such as lantibiotics to gain advantage in the competitive natural environments of microbiomes. Epilancins constitute an until now underexplored family of lantibiotics with an unknown ecological role and unresolved mode of action. We discovered production of an epilancin in the nasal isolate Staphylococcus epidermidis A37.
View Article and Find Full Text PDFPrevotella intermedia, a Gram-negative bacterium from the Bacteroidota phylum, is associated with periodontitis. Other species within this phylum are known to possess the general O-glycosylation system. The O-glycoproteome has been characterized in several species, including Tannerella forsythia, Porphyromonas gingivalis, and Flavobacterium johnsoniae.
View Article and Find Full Text PDFThe ongoing coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 coronavirus and the perpetual rise of new variants warrant investigation of the molecular and structural details of the infection process and modulation of the host defense by viral proteins. This Letter reports the combined experimental and computational approaches to provide key insights into the structural and functional basis of Nsp1's association with different cyclophilins and FKBPs in regulating COVID-19 infection. We demonstrated the real-time stability and functional dynamics of the Nsp1-CypA/FKBP1A complex and investigated the repurposing of potential inhibitors that could block these interactions.
View Article and Find Full Text PDFis an obligate zoonotic bacterium that targets macrophages causing a disease called Q fever. It has a biphasic developmental life cycle where the extracellular and metabolically inactive small cell variant (SCV) transforms inside the host into the vegetative large cell variant (LCV). However, details about the morphological and structural changes of this transition are still lacking.
View Article and Find Full Text PDFThe Dot/Icm type IV secretion system (T4SS) delivers effector proteins into host cells during infection. Despite its significance as a potential drug target, our current understanding of its atomic structure is limited to isolated subcomplexes. In this study, we used subtomogram averaging and integrative modeling to construct a nearly-complete model of the Dot/Icm T4SS accounting for seventeen protein components.
View Article and Find Full Text PDFAgrobacterium tumefaciens causes crown gall disease in plants by the horizontal transfer of oncogenic DNA. The conjugation is mediated by the VirB/D4 type 4 secretion system (T4SS) that assembles an extracellular filament, the T-pilus, and is involved in mating pair formation between A. tumefaciens and the recipient plant cell.
View Article and Find Full Text PDFCurr Opin Cell Biol
December 2022
Subversion of the host cell cytoskeleton is a virulence attribute common to many bacterial pathogens. On mucosal surfaces, bacteria have evolved distinct ways of interacting with the polarised epithelium and manipulating host cell structure to propagate infection. For example, Shigella and Listeria induce cytoskeletal changes to induce their own uptake into enterocytes in order to replicate within an intracellular environment and then spread from cell-to-cell by harnessing the host actin cytoskeleton.
View Article and Find Full Text PDFThe bacterial flagellar type III secretion system (fT3SS) is a suite of membrane-embedded and cytoplasmic proteins responsible for building the flagellar motility machinery. Homologous nonflagellar (NF-T3SS) proteins form the injectisome machinery that bacteria use to deliver effector proteins into eukaryotic cells, and other family members were recently reported to be involved in the formation of membrane nanotubes. Here, we describe a novel, evolutionarily widespread, hat-shaped structure embedded in the inner membranes of bacteria, of yet-unidentified function, that is present in species containing fT3SS.
View Article and Find Full Text PDFAdhesive pili assembled through the chaperone-usher pathway are hair-like appendages that mediate host tissue colonization and biofilm formation of Gram-negative bacteria. Archaic chaperone-usher pathway pili, the most diverse and widespread chaperone-usher pathway adhesins, are promising vaccine and drug targets owing to their prevalence in the most troublesome multidrug-resistant pathogens. However, their architecture and assembly-secretion process remain unknown.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 520 million people around the globe resulting in more than 6.2 million as of May 2022. Understanding the cell entry mechanism of SARS-CoV-2 and its entire repertoire is a high priority for developing improved therapeutics.
View Article and Find Full Text PDFBiochem Soc Trans
February 2022
Viruses can be enveloped or non-enveloped, and require a host cell to replicate and package their genomes into new virions to infect new cells. To accomplish this task, viruses hijack the host-cell machinery to facilitate their replication by subverting and manipulating normal host cell function. Enveloped viruses can have severe consequences for human health, causing various diseases such as acquired immunodeficiency syndrome (AIDS), seasonal influenza, COVID-19, and Ebola virus disease.
View Article and Find Full Text PDFElectron cryo-microscopy (cryo-EM) has lately emerged as a powerful method in structural biology and cell biology. While cryo-EM single-particle analysis (SPA) is now routinely delivering structures of purified proteins and protein complexes at near-atomic resolution, the use of electron cryo-tomography (cryo-ET), together with subtomogram averaging, is allowing visualization of macromolecular complexes in their native cellular environment, at unprecedented resolution. The unique ability of cryo-EM to provide information at many spatial resolution scales from ångströms to microns makes it an invaluable tool that bridges the classic "resolution-gap" between structural biology and cell biology domains.
View Article and Find Full Text PDFElectron cryo-tomography (cryo-ET) is a technique that allows the investigation of intact macromolecular complexes while they are in their cellular milieu. Over the years, cryo-ET has had a huge impact on our understanding of how large biomolecular complexes look like, how they assemble, disassemble, function, and evolve(d). Recent hardware and software developments and combining cryo-ET with other techniques, e.
View Article and Find Full Text PDFCellulose is a widespread component of bacterial biofilms, where its properties of exceptional water retention, high tensile strength, and stiffness prevent dehydration and mechanical disruption of the biofilm. Bacteria in the genus secrete crystalline cellulose, with a structure very similar to that found in plant cell walls. How this higher-order structure is produced is poorly understood.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe self-assembly of cellular macromolecular machines such as the bacterial flagellar motor requires the spatio-temporal synchronization of gene expression with proper protein localization and association of dozens of protein components. In Salmonella and Escherichia coli, a sequential, outward assembly mechanism has been proposed for the flagellar motor starting from the inner membrane, with the addition of each new component stabilizing the previous one. However, very little is known about flagellar disassembly.
View Article and Find Full Text PDFLegionella pneumophila survives and replicates inside host cells by secreting ~300 effectors through the defective in organelle trafficking (Dot)/intracellular multiplication (Icm) type IVB secretion system (T4BSS). Here, we used complementary electron cryotomography and immunofluorescence microscopy to investigate the molecular architecture and biogenesis of the Dot/Icm secretion apparatus. Electron cryotomography mapped the location of the core and accessory components of the Legionella core transmembrane subcomplex, revealing a well-ordered central channel that opens into a large, windowed secretion chamber with an unusual 13-fold symmetry.
View Article and Find Full Text PDFDetermining the three-dimensional structure of biomacromolecules at high resolution in their native cellular environment is a major challenge for structural biology. Toward this end, electron cryotomography (ECT) allows large bio-macromolecular assemblies to be imaged directly in their hydrated physiological milieu to ~4 nm resolution. Combining ECT with other techniques like fluorescent imaging, immunogold labeling, and genetic manipulation has allowed the in situ investigation of complex biological processes at macromolecular resolution.
View Article and Find Full Text PDFThe bacterial flagellar motor, a cell-envelope-embedded macromolecular machine that functions as a cellular propeller, exhibits significant structural variability between species. Different torque-generating stator modules allow motors to operate in different pH, salt or viscosity levels. How such diversity evolved is unknown.
View Article and Find Full Text PDF