Publications by authors named "Debmalya Bhunia"

Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines.

View Article and Find Full Text PDF

Intracellular protein-protein interactions provide a major therapeutic target for the development of peptide-based anticancer therapeutic agents. MDM2 is the 491-residue protein encoded by the MDM2 oncogene. Being a ubiquitin-protein ligase, MDM2 represses the transcription ability of the tumor suppressor p53 by proteasome-mediated degradation.

View Article and Find Full Text PDF

We report a synthesis of bifacial peptide nucleic acids (bPNAs) with novel diketopiperazine (DKP) backbones that display unnatural melamine (M) bases, as well as native bases. To examine the structure-function scope of DKP bPNAs, we synthesized a set of bPNAs by using diaminopropionic acid, diaminobutyric acid, ornithine, and lysine derivatives to display the base-tripling motifs, which result in one, two, three, or four carbons linking the alpha carbon to the side-chain amine. Thermal denaturation of DNA hybrids with these bPNAs revealed that the optimal side-chain linkage was four carbons, corresponding to the lysine derivative.

View Article and Find Full Text PDF
Article Synopsis
  • - Cell proliferation is vital, but if not properly regulated by the cell cycle and proteins like p16, it can lead to cancer; in many cancers, p16 is found to be inactive, promoting uncontrolled cell division.
  • - The restoration of p16 activity is essential, with strategies like using viral vectors, small molecules, and peptides to suppress abnormal cell growth.
  • - This study aims to enhance the effectiveness of p16 by creating a hybrid peptide that includes a nuclear-localization signal and a short peptide, which targets cancer cell proliferation in chronic myelogenous leukemia by promoting apoptosis.
View Article and Find Full Text PDF

We report herein a new class of synthetic reagents for targeting the element for nuclear expression (ENE) in MALAT1, a long noncoding RNA upregulated in many cancers. The -acting ENE contains a U-rich internal loop (URIL) that forms an 11 base UAU-rich triplex stem with the truncated 3' oligo-A tail of MALAT1, protecting the terminus from exonuclease digestion and greatly extending transcript lifetime. Bifacial peptide nucleic acids (bPNAs) similarly bind URILs base triple formation between two uracil bases and a synthetic base, melamine.

View Article and Find Full Text PDF
Article Synopsis
  • * BBT interacts with tubulin, similar to colchicine, and disrupts microtubule dynamics, leading to depolymerization and enhanced fluorescence.
  • * This molecule activates important tumor-suppressing pathways and demonstrates tumor regression in a spheroid model, suggesting its potential as a blueprint for future anticancer drugs.
View Article and Find Full Text PDF

The notion of using synthetic heterocycles instead of the native bases to interface with DNA and RNA has been explored for nearly 60 years. Unnatural bases compatible with the DNA/RNA coding interface have the potential to expand the genetic code and co-opt the machinery of biology to access new macromolecular function; accordingly, this body of research is core to synthetic biology. While much of the literature on artificial bases focuses on code expansion, there is a significant and growing effort on docking synthetic heterocycles to noncoding nucleic acid interfaces; this approach seeks to illuminate major processes of nucleic acids, including regulation of transcription, translation, transport, and transcript lifetimes.

View Article and Find Full Text PDF

The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)-/- mice.

View Article and Find Full Text PDF

A multiarm nanomedicine template has been designed following bottom-up approach, which target neuropilin-1 (Nrp-1) receptor of cancer cells. Through this venture, we discovered that cucurbit [6] uril (CB [6]) binds with tubulin close to binding pocket of vinblastine site and perturbs tubulin polymerization. To increase the specificity of gold nanoparticle (GNP) toward Nrp-1-rich cancer cells, we further modified this GNP with Nrp-1 receptor-specific short peptide (CGNKRTR).

View Article and Find Full Text PDF

An indole-rich tripodal microtubule inhibitor is designed, which binds at the DCVJ site of tubulin and inhibits its polymerization. It causes apoptotic death of cancer cells without affecting normal cells and inhibits the growth of tumors. Finally, STD-NMR and TR-NOESY experiments reveal that the indole appendages play a crucial role in interacting with tubulin.

View Article and Find Full Text PDF

Microtubules play a crucial role in maintenance of structure, function, axonal extensions, cargo transport, and polarity of neurons. During neurodegenerative diseases, microtubule structure and function get severely damaged due to destabilization of its major structural proteins. Therefore, design and development of molecules that stabilize these microtubule networks have always been an important strategy for development of potential neurotherapeutic candidates.

View Article and Find Full Text PDF

A matrix metalloproteinase (MMP) targeted tetrapeptide vesicle has been designed and developed, which strongly binds at a MMP9 enzymatic site. Interestingly, it has a propensity to encapsulate and deliver the doxorubicin drug specifically to the cancer cell, induces superior apoptotic death, and inhibits the metastatic cancer cell migration and growth of multicellular 3D spheroids.

View Article and Find Full Text PDF

Identification of key amino acids is required for development of efficient cell-penetrating peptides (CPPs) and has tremendous implications in medicine. Extensive research work has enlightened us about the importance of two amino acids, arginine and tryptophan, in cell penetration. Here, we present a top-down approach to show how spatial positions of two tryptophans regulate the cellular entry and nuclear localization.

View Article and Find Full Text PDF

A series of peptides with a long fatty acyl chain covalently attached to the C-terminal part and a free amine (-NH) group at the N-terminus have been designed so that these molecules can be assembled in aqueous medium by using various noncovalent interactions. Five different peptide amphiphiles with a general chemical formula [HN-(CH)CONH-Phe-CONHC (n = 1-5, C = dodecylamine)] have been synthesized, characterized, and examined for self-assembly and hydrogelation. All of these molecules [P1 (n = 1), P2 (n = 2), P3 (n = 3), P4 (n = 4), P5 (n = 5)] form thermoresponsive hydrogels in water (pH 6.

View Article and Find Full Text PDF

A novel neuro-compatible peptide-based hydrogel has been designed and developed, which contains microtubule stabilizing and neuroprotective short peptide. This hydrogel shows strong three-dimensional cross-linked fibrillary networks, which can capture water molecules. Interestingly, this hydrogel serves as excellent biocompatible soft material for 2D and 3D (neurosphere) neuron cell culture and provides stability of key cytoskeleton filaments such as microtubule and actin.

View Article and Find Full Text PDF

Many anticancer drugs are developed for the treatment of cancer from natural sources. Photosystem I (PSI), a protein complex present in the chloroplast, is involved in photosynthesis and generates reactive oxygen species (ROS) in plant. Here, we used the ROS generation property of PSI for cancer therapy.

View Article and Find Full Text PDF

An ideal nano drug delivery agent must be potent enough to carry high dose of therapeutics and competent enough in targeting specific cell of interest, having adequate optimized physiochemical properties and biocompatibility. Carrying differentially polar therapeutics simultaneously will make them superior in their class. However, it is of enormous challenge to the researchers to find such a unique nanocarrier and to engineer all of the above-mentioned features into it.

View Article and Find Full Text PDF

An antimitotic cell penetrating octapeptide containing single Arg amino acid is discovered, which strongly binds with the exchangeable GTP/GDP binding site of tubulin, inhibits tubulin polymerization, reduces kinesin driven microtubule motility, activates apoptotic and mitotic check point proteins, induces apoptotic death and significantly inhibits the multicellular tumor spheroid growth of HeLa cells.

View Article and Find Full Text PDF

Synthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature. Interestingly, gel stiffness, drug release capacity and proteolytic stability of these hydrogels have been successfully modulated by incorporating d-amino acid residues, indicating their potential use for drug delivery in the future.

View Article and Find Full Text PDF

The structure and dynamics of an antigen-antibody complex are monitored by circular dichroism (CD) spectroscopy, fluorescence correlation spectroscopy (FCS) and single molecule FRET (smFRET). In this work, the antigen is enhanced GFP (EGFP) and the antibody is anti-EGFP VHH-His6. From FCS measurements, the hydrodynamic radius (rH) of EGFP and its antibody (VHH-His6) is found to be 24 ± 2 Å and 18 ± 2 Å, respectively.

View Article and Find Full Text PDF

Herein, we report a novel hexapeptide, derived from activity dependent neuroprotective protein (ADNP), that spontaneously self-assembles to form antiparallel β-sheet structure and produces nanovesicles under physiological conditions. This peptide not only strongly binds with β-tubulin in the taxol binding site but also binds with the microtubule lattice in vitro as well as in intracellular microtubule networks. Interestingly, it shows inhibition of amyloid fibril formation upon co-incubation with Aβ peptide following an interesting mechanistic pathway and excellent neuroprotection in PC12 cells treated with anti-nerve growth factor (NGF).

View Article and Find Full Text PDF

A short GC rich DNA derived from microbial origin interacts with tubulin/microtubules activates p53 over expression and induces apoptotic death of human breast cancer (MCF-7) cells.

View Article and Find Full Text PDF

Single molecule Förster resonance energy transfer (FRET) has been applied, for the first time, to monitor the growth (polymerization) and the shrinkage (depolymerization) of the dynamic microtubules, employing EGFP (attached to Mal3) as a donor and alexa-568 bound to tubulin as an acceptor.

View Article and Find Full Text PDF

We report in this work that the Aβ peptide directly interacts with tubulin close to the vinblastine and GTP/GDP binding site, inhibits the tubulin polymerization rate, induces tubulin aggregation, causes cell shrinking, enhances Mad2, BubR1, p53, and p21 activation in MCF7 cells and induces the apoptotic death of A549, HeLa and MCF7 cells.

View Article and Find Full Text PDF