Publications by authors named "Debjani Maiti"

Nitric oxide (NO) is a ubiquitous messenger molecule playing a key role in various physiological and pathological processes. However, producing a selective turn-on fluorescence response to NO is a challenging task due to (a) the very short half-life of NO (typically in the range of 0.1-10 s) in the biological milieu and (b) false positive responses to reactive carbonyl species (RCS) (e.

View Article and Find Full Text PDF

Abnormal levels (high/low) of urinary human serum albumin (HSA) are associated with a number of diseases and thus act as an essential biomarker for quick therapeutic monitoring and biomedical diagnosis, entailing the urgent development of an effective chemosensor to quantify the albumin levels. Herein, we have rationally designed and developed a small fluorogenic molecular probe, (Z)-2-(5-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl) methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid (HJRA) with a twisted intramolecular charge transfer (TICT) property, which can easily self-assemble into nonfluorescent nanoaggregates in aqueous solution. However, HJRA nanoaggregates can selectively bind with serum albumin proteins (HSA/BSA) in ∼100% PBS medium, thereby facilitating the disassembly of nanoaggregates into monomers, exhibiting a clear turn-on red fluorescent response toward HSA and BSA.

View Article and Find Full Text PDF
Article Synopsis
  • Fluorescence spectroscopy is crucial for detecting nitric oxide (NO) and studying its biological roles in living organisms.
  • A benzo-coumarin based molecular probe (BCM) is used for NO sensing in water, showing significant changes in fluorescence when NO interacts with it.
  • The probe demonstrates high sensitivity and effectiveness, with a low detection limit and improvements in fluorescence intensity, making it suitable for tracking NO inside cells without harming them.
View Article and Find Full Text PDF

A dual-emission pyrene-based new fluorescent probe (-(4-nitro-phenyl)-'-pyren-1-ylmethyl-ene-ethane-1,2-diamine (PyDA-NP)) displays green fluorescence for nitric oxide (NO) sensing, whereas it exhibits blue emission in the aggregated state. The mechanism of nitric oxide (NO/NO) sensing is based on N-nitrosation of aromatic secondary amine, which was not interfered by reactive oxygen species and reactive nitrogen species. The aggregation-induced enhancement of emission (AIEE) behaviors of the PyDA-NP could be attributed to the restriction of intramolecular rotation and vibration, resulting in rigidity enhancement of the molecules.

View Article and Find Full Text PDF

Here, we present a detailed investigation on the interaction of 4-chloro-7-nitro-1,2,3-benzoxadiazole (NBD) embedded olanzapine derivative (OLA-NBD) with a model transport protein, human serum albumin (HSA). The thermodynamic parameters, Δ, Δ, and Δ, as evaluated by considering the van't Hoff relationship imply the major contribution of electrostatic/ionic interactions for the HSA-OLA-NBD association. The OLA-NBD induced quenching of HSA emission occurs through static quenching mechanism, indicating a 1:1 association, as portrayed from Benesi-Hildebrand plot, with ∼10 M association constant value, and it is in good harmony with the value estimated from anisotropy experiment.

View Article and Find Full Text PDF

We report a novel phenazine-embedded fluorescent probe (2-[2-(pyridin-2-ylmethoxy)-phenyl]-1-imidazo[4,5-]phenazine, PIP), which upon complexation with Cu(II)-ion-forming [(PIP)Cu(Cl)] becomes nonfluorescent but regenerates fluorescence in a selective reaction with NO and HNO over different biologically reactive oxygen and nitrogen (ROS/RNS) species under physiological conditions. The fluorescence intensity of PIP gets quenched due to the formation of the [(PIP)Cu(Cl)] complex, which regenerates the fluorescence by 67 and 84% upon reaction either with NO or HNO, respectively, in the presence of other biological reducing species. Details of photophysical properties of PIP, [(PIP)Cu(Cl)], and [(PIP)Cu] have been studied by density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Correction for 'A smart molecular probe for selective recognition of nitric oxide in 100% aqueous solution with cell imaging application and DFT studies' by Ananya Dutta et al., Org. Biomol.

View Article and Find Full Text PDF

Herein, a simple, least-cytotoxic as well as an efficient fluorescent sensor HqEN480 was prepared from (quinolin-8-yloxy)-acetic acid ethyl ester (L1) and N,N-dimethylethylene diamine to recognize NO in 100% aqueous solution. Its marked selectivity and sensitivity towards NO, makes it a highly suitable probe for nitric oxide under in vitro conditions with the possibility of in vivo monitoring of NO. Upon addition of 3.

View Article and Find Full Text PDF

We introduce herein, a novel copper complex-based fluorescent probe [CuII(DQ468)Cl]+ that exhibits a significant fluorescence turn-on response towards nitroxyl (HNO) with high selectivity over other biological reactive oxygen, nitrogen and sulfur species, including nitric oxide (NO). A smart strategy, involving HNO-induced reduction of paramagnetic [CuII(DQ468)Cl]+ to diamagnetic [CuI(DQ468)]+ with concomitant fluorescence enhancement via a PET mechanism is focused here. This reduction-based strategy was also supported by X-band EPR response and mass spectroscopy.

View Article and Find Full Text PDF

In this article, we have designed and synthesized a new, convenient and efficient phenanthroquinone-pyridoxal based fluorogenic probe PQPY, highly suitable for the selective and sensitive detection of nitric oxide in an aerated aqueous (7 : 3/H2O : MeCN) medium at pH 7.0 (10 mM HEPES buffer). Upon addition of nitric oxide, this probe exhibits emission in the green region (λem = 505 nm) which is ascribed to ICT (intramolecular charge transfer) from the phenanthroquinone moiety to the imidazole -N-N[double bond, length as m-dash]O fragment.

View Article and Find Full Text PDF