Across eukaryotes, gene regulation is manifested via chromatin states roughly distinguished as heterochromatin and euchromatin. The establishment, maintenance, and modulation of the chromatin states is mediated using several factors including chromatin modifiers. However, factors that avoid the intrusion of silencing signals into protein-coding genes are poorly understood.
View Article and Find Full Text PDFRNA-dependent RNA polymerases (RDR) generate double-stranded (ds)RNA triggers for RNA silencing across eukaryotes. Among the three clades, α-clade and β-clade members are key components of RNA silencing and mediators of stress responses across eukaryotes. However, γ-clade members are unusual in that they are represented in phylogenetically distant plants and fungi, and their functions are unknown.
View Article and Find Full Text PDFBackground: Tuberculosis remains a major public health problem in various parts of the world. It leads to various haematological changes. Study of these haematological changes will help better patient management.
View Article and Find Full Text PDFA new, stable, null mutant of OsMADS1 generated by homologous recombination-based gene targeting in an indica rice confirms its regulatory role for floral meristem identity, its determinate development and floral organ differentiation. OsMADS1, an E-class MADS-box gene, is an important regulator of rice flower development. Studies of several partial loss-of-function and knockdown mutants show varied floret organ defects and degrees of meristem indeterminacy.
View Article and Find Full Text PDFThis manuscript describes the functions of an Argonaute protein named AGO17 in rice. AGO17 is required for the development of rice reproductive tissues. Argonaute (AGO) proteins are a well-conserved multigene family of regulators mediating gene silencing across eukaryotes.
View Article and Find Full Text PDFDomestication of rice () included conversion of perennial wild species with few seeds to short plants that produced abundant seeds. Most domestication-associated changes were due to variations in transcription factors and other key proteins such as enzymes. Here, we show that multiple yield-related traits associated with rice domestication are linked to micro (mi) RNA-mediated regulation.
View Article and Find Full Text PDF