Metabolic modeling and machine learning (ML) are crucial components of the evolving next-generation tools in systems and synthetic biology, aiming to unravel the intricate relationship between genotype, phenotype, and the environment. Nonetheless, the comprehensive exploration of integrating these two frameworks, and fully harnessing the potential of fluxomic data, remains an unexplored territory. In this study, we present, rigorously evaluate, and compare ML-based techniques for data integration.
View Article and Find Full Text PDF