The diversity of germ cell developmental strategies has been well documented across many vertebrate clades. However, much of our understanding of avian primordial germ cell (PGC) specification and differentiation has derived from only one species, the chicken (Gallus gallus). Of the three major classes of birds, chickens belong to Galloanserae, representing less than 4% of species, while nearly 95% of extant bird species belong to Neoaves.
View Article and Find Full Text PDFFlower color diversity is a key taxonomic trait in Meconopsis species, enhancing their appeal as ornamental flowers. However, knowledge of the molecular mechanisms of flower color formation in Meconopsis species is still limited. M.
View Article and Find Full Text PDFGlucocorticoids induced osteonecrosis of the femoral head (GIONFH) is a devastating orthopedic disease. Previous studies suggested that connexin43 is involved in the process of osteogenesis and angiogenesis. However, the role of Cx43 potentiates in the osteogenesis and angiogenesis of bone marrow-derived stromal stem cells (BMSCs) in GIONFH is still not investigated.
View Article and Find Full Text PDFEmbryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates.
View Article and Find Full Text PDFOutflow tract (OFT) anomalies account for about 30% of human congenital heart defects detected at birth. The second heart field (SHF) progenitors contribute to OFT and right ventricle (RV) development, but the process largely remains unknown. WDR1 (WD-repeat domain 1) is a major co-factor of actin depolymerizing factor (ADF)/cofilin that actively disassembles ADF/cofilin-bound actin filaments.
View Article and Find Full Text PDFFertilization is a multi-step process that begins with plasma membrane interactions that enable sperm - oocyte binding followed by fusion of the sperm and oocyte plasma membranes. Once membrane fusion has occurred, sperm incorporation involves actin remodeling events within the oocyte cortex that allow the sperm head to penetrate the cortical actin layer and gain access to the ooplasm. Despite the significance for reproduction, the control mechanisms involved in gamete binding, fusion, and sperm incorporation are poorly understood.
View Article and Find Full Text PDFMaintaining tissue homeostasis is a critical process during infection and inflammation. Tissues with a high intrinsic turnover, such as the intestinal epithelium, must launch a rapid response to infections while simultaneously coordinating cell proliferation and differentiation decisions. In this study, we searched for genes required for regeneration of the Drosophila intestine, and thereby affecting overall organism survival after infection with pathogenic bacteria.
View Article and Find Full Text PDFPrechordal mesendoderm (PME) is a derivative of gastrula organizer underlying the anterior neural plate of vertebrate embryos. It has been firmly established that PME is critical for head induction and anterior-posterior patterning. Therefore, the establishment of PME in a desired shape and size at a correct position during early embryogenesis is crucial for normal head patterning.
View Article and Find Full Text PDFAxial-paraxial mesoderm patterning is a special dorsal-ventral patterning event of establishing the vertebrate body plan. Though dorsal-ventral patterning has been extensively studied, the initiation of axial-paraxial mesoderm pattering remains largely unrevealed. In zebrafish, spt cell-autonomously regulates paraxial mesoderm specification and flh represses spt expression to promote axial mesoderm fate, but the expression domains of spt and flh initially overlap in the entire marginal zone of the embryo.
View Article and Find Full Text PDFAsymmetric cell division of Drosophila neural stem cells or neuroblasts is an important process which gives rise to two different daughter cells, one of which is the stem cell itself and the other, a committed or differentiated daughter cell. During neuroblast asymmetric division, atypical Protein Kinase C (aPKC) activity is tightly regulated; aberrant levels of activity could result in tumorigenesis in third instar larval brain. We identified clueless (clu), a genetic interactor of parkin (park), as a novel regulator of aPKC activity.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are post-transcriptional regulators of growth and development in both plants and animals. Flowering is critical for the reproduction of angiosperms. Flower development entails the transition from vegetative growth to reproductive growth, floral organ initiation, and the development of floral organs.
View Article and Find Full Text PDFThe development of oligodendrocytes, the myelinating cells of the vertebrate CNS, is regulated by a cohort of growth factors and transcription factors. Less is known about the signaling pathways that integrate extracellular signals with intracellular transcriptional regulators to control oligodendrocyte development. Cyclin dependent kinase 5 (Cdk5) and its co-activators play critical roles in the regulation of neuronal differentiation, cortical lamination, neuronal cell migration and axon outgrowth.
View Article and Find Full Text PDFThe Sec13-Sec31 heterotetramer serves as the outer coat in the COPII complex, which mediates protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Although it has been studied in depth in yeast and cultured cells, the role of COPII in organogenesis in a multicellular organism has not. We report here that a zebrafish sec13(sq198) mutant, which exhibits a phenotype of hypoplastic digestive organs, has a mutation in the sec13 gene.
View Article and Find Full Text PDFGrasses have highly specialized flowers and their outer floral organ identity remains unclear. In this study, we identified and characterized rice mutants that specifically disrupted the development of palea, one of the outer whorl floral organs. The depressed palea1 (dp1) mutants show a primary defect in the main structure of palea, implying that palea is a fusion between the main structure and marginal tissues on both sides.
View Article and Find Full Text PDFThe origin of germline cells was a crucial step in animal evolution. Therefore, in both developmental biology and evolutionary biology, the mechanisms of germline specification have been extensively studied over the past two centuries. However, in many animals, the process of germline specification remains unclear.
View Article and Find Full Text PDFNotch signaling mediates multiple developmental decisions in Drosophila. In this study, we have examined the role of Notch signaling in Drosophila larval optic lobe development. Loss of function in Notch or its ligand Delta leads to loss of the lamina and a smaller medulla.
View Article and Find Full Text PDFDuring vesicular transport between the endoplasmic reticulum and the Golgi, members of the TMED/p24 protein family form hetero-oligomeric complexes that facilitate protein-cargo recognition as well as vesicle budding. In addition, they regulate each other's level of expression. Despite analyses of TMED/p24 protein distribution in mammalian cells, yeast, and C.
View Article and Find Full Text PDFAlthough fibroblast growth factor 9 (FGF9) is widely expressed in the central nervous system (CNS), the function of FGF9 in neural development remains undefined. To address this question, we deleted the Fgf9 gene specifically in the neural tube and demonstrated that FGF9 plays a key role in the postnatal migration of cerebellar granule neurons. Fgf9-null mice showed severe ataxia associated with disrupted Bergmann fiber scaffold formation, impaired granule neuron migration, and upset Purkinje cell maturation.
View Article and Find Full Text PDFThe C. elegans Hox gene egl-5 (ortholog of Drosophila Abdominal-B) is expressed in multiple tissues in the tail region and is involved in tail patterning. In this study, we identify and clone the corresponding C.
View Article and Find Full Text PDFRegulation of the lymphoid enhancer factor 1 (Lef-1) transcription factor is important for the inductive formation of many epithelial-derived appendages including airway submucosal glands (SMGs). Although Wnts have been linked to developmental processes involving transcriptional activation of the Lef-1 protein, there is little in vivo information directly linking Wnts with the transcriptional regulation of the Lef-1 promoter. In the present study, we hypothesized that Wnt3a directly regulates Lef-1 gene expression required for SMG morphogenesis in mice.
View Article and Find Full Text PDFCardiac neural crest cells undergo extensive cell rearrangements during the formation of the aorticopulmonary septum in the outflow tract. However, the morphogenetic mechanisms involved in this fundamental process remain poorly understood. To determine the function of the Ca2+-dependent cell adhesion molecule, N-cadherin, in murine neural crest, we applied the Cre/loxP system and created mouse embryos genetically mosaic for N-cadherin.
View Article and Find Full Text PDFProtocadherins (Pcdhs), a major subfamily of cadherins, play an important role in specific intercellular interactions in development. These molecules are characterized by their unique extracellular domain (EC) with more than 5 cadherin-like repeats, a transmembrane domain (TM) and a variable cytoplasmic domain. PCNS (Protocadherin in Neural crest and Somites), a novel Pcdh in Xenopus, is initially expressed in the mesoderm during gastrulation, followed by expression in the cranial neural crest (CNC) and somites.
View Article and Find Full Text PDFIn the embryonic mouse retina, retinoic acid (RA) is unevenly distributed along the dorsoventral axis: RA-rich zones in dorsal and ventral retina are separated by a horizontal RA-poor stripe that contains the RA-inactivating enzyme CYP26A1. To explore the developmental role of this arrangement, we studied formation of the retina and its projections in Cyp26a1 null-mutant mice. Expression of several dorsoventral markers was not affected, indicating that CYP26A1 is not required for establishing the dorsoventral retina axis.
View Article and Find Full Text PDFWe compared gene expression profiles of mouse and human ES cells by immunocytochemistry, RT-PCR, and membrane-based focused cDNA array analysis. Several markers that in concert could distinguish undifferentiated ES cells from their differentiated progeny were identified. These included known markers such as SSEA antigens, OCT3/4, SOX-2, REX-1 and TERT, as well as additional markers such as UTF-1, TRF1, TRF2, connexin43, and connexin45, FGFR-4, ABCG-2, and Glut-1.
View Article and Find Full Text PDFThe vertebrate retina develops from a sheet of neuroepithelial cells. Because adherens and tight junctions are critical for epithelial and neuronal differentiation in a variety of eukaryotic systems, we examined the role of Par-3, a PDZ scaffold protein that is critical in cellular membrane junction formation. We cloned the zebrafish Par-3 ortholog (pard3), which encodes two Pard3 proteins (150 and 180 kDa) that differ in their carboxyl-terminus.
View Article and Find Full Text PDF