As in other animals, insects can modulate their odor-guided behaviors, especially sexual behavior, according to environmental and physiological factors such as the individual's nutritional state. This behavioral flexibility results from modifications of the olfactory pathways under the control of hormones. Most studies have focused on the central modulation of the olfactory system and less attention has been paid to the peripheral olfactory system.
View Article and Find Full Text PDFIn animals, sexual maturation coincides with the development of sexual behaviors and reproductive system. These developmental events are influenced by diet and governed by endocrine signals. Here, for the first time in insects, we explored functional links between nutrition and juvenile hormone (JH) in the male reproductive physiology through the insulin signaling pathway (ISP) acting as a transducer of nutritional signals.
View Article and Find Full Text PDFIn many animals, drastic changes are observed during sexual maturation characterized by the reproductive system development concomitantly to the sexual behavior ontogenesis. These modifications are under the control of internal and external factors such as food. Sexual maturation requires considerable energetic investment, and diet has been shown to affect reproductive activities in many taxonomic groups, especially in insects and vertebrates.
View Article and Find Full Text PDFAs in other animals, diet is known to influence insect reproduction, and its impact has been intensively investigated in females. In our study, we examined the effects of various diets on male reproductive success in the moth a pest of many crops. Our experiments showed an increase in the rates of fertilization and hatching when males fed with various sugars (sucrose, fructose, and glucose) supplemented with sodium.
View Article and Find Full Text PDFAnimals invest crucial resources in foraging to support development, sustenance, and reproduction. Foraging and feeding behaviors are rhythmically expressed by most insects. Rhythmic behaviors are modified by exogenous factors like temperature and photoperiod, and internal factors such as the physiological status of the individual.
View Article and Find Full Text PDFIn male moth Agrotis ipsilon, sexual maturation occurs between the third and the fifth day of adult life and is characterized by the development of the reproductive organs such as testes and accessory sex glands. Since sexual maturation requires considerable energy investment, we hypothesized that diet would be an essential regulatory factor in this developmental process. Indeed, the links between the male diet and reproductive physiology have not been described as in females.
View Article and Find Full Text PDFIn insects, juvenile hormone (JH) is critical for the orchestration of male reproductive maturation. For instance, in the male moth, Agrotis ipsilon, the behavioral response and the neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs), to the female-emitted sex pheromone increase with fertility during adulthood and the coordination between these events is governed by JH. However, the molecular basis of JH action in the development of sexual behavior remains largely unknown.
View Article and Find Full Text PDFSince 2020, the Covid-19 pandemic has led universities around the world to hybridize courses (i.e., replacement of classroom time by online activities), most often as a matter of urgency.
View Article and Find Full Text PDFIn the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A.
View Article and Find Full Text PDFMale accessory glands (MAGs) produce seminal fluid proteins that are essential for the fertility and also influence the reproductive physiology and behavior of mated females. In many insect species, and especially in the moth Agrotis ipsilon, juvenile hormone (JH) promotes the maturation of the MAGs but the underlying molecular mechanisms in this hormonal regulation are not yet well identified. Here, we examined the role of the JH receptor, Methoprene-tolerant (Met) and the JH-inducible transcription factor, Krüppel homolog 1 (Kr-h1) in transmitting the JH signal that upregulates the growth and synthetic activity of the MAGs in A.
View Article and Find Full Text PDFMost animal species, including insects, are able to modulate their responses to sexual chemosignals and this flexibility originates from the remodeling of olfactory areas under the influence of the dopaminergic system. In the moth , the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and after a prior exposure to pheromone signal, and this change is accompanied by an increase in neuronal sensitivity within the primary olfactory centers, the antennal lobes (ALs). To identify the underlying neuromodulatory mechanisms, we examined whether this age- and experience-dependent olfactory plasticity is mediated by dopamine (DA) through the Dop1 receptor, an ortholog of the vertebrate D1-type dopamine receptors, which is positively coupled to adenylyl cyclase.
View Article and Find Full Text PDFIn the male moth, Agrotis ipsilon, the behavioural response and neuron sensitivity within the olfactory centres, the antennal lobes (ALs), to female sex pheromone increase with age, in correlation with the maturation of sex accessory glands (SAGs). By contrast, newly mated males cease to be attracted to sex pheromone and remate when their SAGs are refilled during the next night. The insect hormone receptor 38 (HR38), an ortholog of the vertebrate NR4A receptors, is a component of ecdysteroid signalling pathway which controls adult male physiology and behaviour.
View Article and Find Full Text PDFThe oestrogen receptor-related receptors (ERRs) are orphan nuclear receptors that were originally identified on the basis of their close homology to the oestrogen receptors. The three mammalian ERR genes participate in the regulation of vital physiological processes including reproduction, development and metabolic homeostasis. Although unique ERRs have been found in insects, data on the function and regulation of these receptors remain sparse.
View Article and Find Full Text PDFNeonicotinoid insecticides are widely used to protect plants against pest insects, and insecticide residues remaining in the environment affect both target and non-target organisms. Whereas low doses of neonicotinoids have been shown to disturb the behaviour of pollinating insects, recent studies have revealed that a low dose of the neonicotinoid clothianidin can improve behavioural and neuronal sex pheromone responses in a pest insect, the male moth Agrotis ipsilon, and thus potentially improve reproduction. As male moth behaviour depends also on its physiological state and previous experience with sensory signals, we wondered if insecticide effects would be dependent on plasticity of olfactory-guided behaviour.
View Article and Find Full Text PDFUnlabelled: As in vertebrates, the insect steroid hormones, especially 20-hydroxyecdysone (20E), initiate and regulate sexual behavior by acting on the central nervous system. This 20E action is, in part, triggered by transcriptional events mediated through the binding of 20E to a heterodimer comprising the ecdysone receptor (EcR) and ultraspiracle (USP). However, to date, our knowledge about this genomic steroid pathway remains incomplete.
View Article and Find Full Text PDFOlfactory information mediating sexual behavior is crucial for reproduction in many animals, including insects. In male moths, the macroglomerular complex (MGC) of the primary olfactory center, the antennal lobe (AL) is specialized in the treatment of information on the female-emitted sex pheromone. Evidence is accumulating that modulation of behavioral pheromone responses occurs through neuronal plasticity via the action of hormones and/or catecholamines.
View Article and Find Full Text PDFMost animals including insects rely on olfaction to find their mating partners. In moths, males are attracted by female-produced sex pheromones inducing stereotyped sexual behavior. The behaviorally relevant olfactory information is processed in the primary olfactory centre, the antennal lobe (AL).
View Article and Find Full Text PDFIn many animals, male copulation is dependent on the detection and processing of female-produced sex pheromones, which is generally followed by a sexual refractory post-ejaculatory interval (PEI). In the male moth, Agrotis ipsilon, this PEI is characterized by a transient post-mating inhibition of behavioral and central nervous responses to sex pheromone, which prevents males from re-mating until they have refilled their reproductive tracts for a potential new ejaculate. However, the timing and possible factors inducing this rapid olfactory switch-off are still unknown.
View Article and Find Full Text PDFIn most animals, including insects, male reproduction depends on the detection and processing of female-produced sex pheromones. In the male moth, Agrotis ipsilon, both behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to female sex pheromone are age- and hormone-dependent. In many animal species, steroids are known to act at the brain level to modulate the responsiveness to sexually relevant chemical cues.
View Article and Find Full Text PDFResponses of insect olfactory receptor neurons (ORNs) involve an entry of Ca²⁺ through olfactory heterodimeric receptor complexes. In moths, the termination of ORN responses was found to strongly depend on the external Ca²⁺ concentration through the activation of unknown Ca²⁺-dependent Cl⁻ channels. We thus investigated the molecular identity of these Cl⁻ channels.
View Article and Find Full Text PDFThe response of insect olfactory receptor neurons (ORNs) involves an increase in intracellular Ca(2+) concentration, as in vertebrate ORNs. In order to decipher the Ca(2+) clearance mechanisms in insect ORNs, we have investigated the presence of a plasma membrane Ca(2+) ATPase (PMCA) in the peripheral olfactory system of the moth Spodoptera littoralis. From an analysis of a male antennal expressed-sequence-tag database combined with a strategy of 5'/3' rapid amplification of cDNA ends plus the polymerase chain reaction, we have cloned a full-length cDNA encoding a PMCA.
View Article and Find Full Text PDFIn the male moth, Agrotis ipsilon, the behavioral response and neuronal sensitivity in the primary olfactory center, the antennal lobe (AL), to sex pheromone increase with age and juvenile hormone (JH) biosynthesis. Although JH has been shown to control this age-dependent plasticity, the underlying signaling pathway remains obscure. In this context, we cloned a full cDNA encoding the Krüppel homolog 1 transcription factor (AipsKr-h1) of A.
View Article and Find Full Text PDFBackground: Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant.
Methodology: Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs.
Physiological and behavioral plasticity allows animals to adapt to changes in external (environmental) and internal (physiological) factors. In insects, the physiological state modulates adult behavior in response to different odorant stimuli. Hormones have the potential to play a major role in the plasticity of the olfactory responses.
View Article and Find Full Text PDFBackground: Carboxyl/cholinesterases (CCEs) are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role of most of these enzymes is unknown.
View Article and Find Full Text PDF